Project description:We generated draft genome sequences for two cold-adapted Archaea, Methanogenium frigidum and Methanococcoides burtonii, to identify genotypic characteristics that distinguish them from Archaea with a higher optimal growth temperature (OGT). Comparative genomics revealed trends in amino acid and tRNA composition, and structural features of proteins. Proteins from the cold-adapted Archaea are characterized by a higher content of noncharged polar amino acids, particularly Gln and Thr and a lower content of hydrophobic amino acids, particularly Leu. Sequence data from nine methanogen genomes (OGT 15 degrees -98 degrees C) were used to generate 1111 modeled protein structures. Analysis of the models from the cold-adapted Archaea showed a strong tendency in the solvent-accessible area for more Gln, Thr, and hydrophobic residues and fewer charged residues. A cold shock domain (CSD) protein (CspA homolog) was identified in M. frigidum, two hypothetical proteins with CSD-folds in M. burtonii, and a unique winged helix DNA-binding domain protein in M. burtonii. This suggests that these types of nucleic acid binding proteins have a critical role in cold-adapted Archaea. Structural analysis of tRNA sequences from the Archaea indicated that GC content is the major factor influencing tRNA stability in hyperthermophiles, but not in the psychrophiles, mesophiles or moderate thermophiles. Below an OGT of 60 degrees C, the GC content in tRNA was largely unchanged, indicating that any requirement for flexibility of tRNA in psychrophiles is mediated by other means. This is the first time that comparisons have been performed with genome data from Archaea spanning the growth temperature extremes from psychrophiles to hyperthermophiles.
Project description:We investigated the functional gene expression changes associated with temperature stress in two psychrophilic sea ice bacteria, Polaribacter sp. ALD9 and Shewanella sp. ALD11.
Project description:CCA-adding enzymes are highly specific RNA polymerases that synthesize and maintain the sequence CCA at the tRNA 3‘-end. Here, we investigated the impact of cold adaptation on the reactivity and specificity of CCA-adding enzymes from psychrophilic bacteria. A comparative study of the corresponding enzymes from closely related psychro-, meso-, and thermophilic Bacillales indicates that the cold-adapted enzymes show a considerable error rate during CCA synthesis, resulting in additional incorporations of C and A residues. It seems that the activity of psychrophilic CCA-adding enzymes is not only achieved at the expense of structural stability, reaction velocity and substrate affinity, but also results in a reduced polymerization fidelity.