ABSTRACT: Transcriptome analysis of Oleaginous microalgae from the Peruvian Amazon of the genus Ankistrodesmus, Chlorella, and Scenedesmus Transcriptome
Project description:We demonstrate that low-dose ionizing radiation from X-rays drives metabolic activation in microalgae. We exploited this phenomenon to develop a method for increased lipid yield in stationary phase Chlorella sorokiniana cultures by 25% in just 24 hours, caused by a reproducible metabolic response that includes up-regulation of >30 lipid metabolism genes. This approach avoids the need to modify the strain or cultivation conditions, and does not affect cell viability or biomass.
Project description:The microalga Coccomyxa subellipsoidea C-169 possesses some features that may be valuable for lipid production, and, as demonstrated in this study, can be greatly induced to produce a high amount of fatty acid by CO2 supplementation. Here we have compared the transcriptome of air group (AG, cells cultured under 0.04% CO2) and CO2-supplemented group (CG, cells cultured under 2% CO2), and found that dramatic and collaborative regulation in central metabolic pathways as well as biochemical processes occured in response to CO2 supplementation. This study gains a broad understanding of how CO2 stress regulates gene expression and eventually reveals a fine-tuned strategy adopted by C-169 to sustain rapid cell growth and lipid production, which will be helpful for the implementation of biofuels production from oleaginous microalgae. Transcriptomic profiles of Coccomyxa subellipsoidea C-169 cultured for 4 days under two CO2 levels (0.04% and 2%, v/v) were generated by digital gene expression (DGE) analysis, in triplicate, using Illumina Hiseq2000.
Project description:The microalga Coccomyxa subellipsoidea C-169 possesses some features that may be valuable for lipid production, and, as demonstrated in this study, can be greatly induced to produce a high amount of fatty acid by CO2 supplementation. Here we have compared the transcriptome of air group (AG, cells cultured under 0.04% CO2) and CO2-supplemented group (CG, cells cultured under 2% CO2), and found that dramatic and collaborative regulation in central metabolic pathways as well as biochemical processes occured in response to CO2 supplementation. This study gains a broad understanding of how CO2 stress regulates gene expression and eventually reveals a fine-tuned strategy adopted by C-169 to sustain rapid cell growth and lipid production, which will be helpful for the implementation of biofuels production from oleaginous microalgae.