Project description:In order to identify new miRNAs, NAT-siRNAs and possibly abiotic-stress regulated small RNAs in rice, three small RNA libraries were constructed from control rice seedlings and seedlings exposed to drought or salt stress, and then subjected to pyrosequencing.
Project description:Fairy rings are zones of stimulated grass growth by the interaction between the fungi and the plant. In the previous research, we reported the identification of the M-bM-^@M-^\fairyM-bM-^@M-^], 2-azahypoxanthine (AHX), produced by the fairy ring-forming fungus and the mechanism of its growth-promoting activity using DNA microarray. We discovered AOH, a common metabolite of AHX in plants. We investigate expression profiling of rice seedlings treated with AHX or AOH for the mechanism of their growth-promoting activity. Three-condition experiment, control vs. AHX-treated rice (50 and 200 mM) and AOH-treated rice (50 and 200 mM).
Project description:To understand the dynamics and global gene reprogramming in the early response to mechanical wounding in rice, the transcriptional response to mechanical injury was analyzed. A time-course experiment revealed the highly dynamic nature of the wound response in rice. Mechanical wounding triggered extensive gene expression reprogramming in the locally wounded leaf, affecting various physiological processes, including defense mechanisms and potentially tissue repair and regeneration. The rice response to mechanical wounding displayed both differences and similarities compared to the response to jasmonate treatment. These results highlight the importance of early JA signaling in response to mechanical stress in rice. This analysis provides an overview of the global transcriptional response to mechanical stress in rice, offering valuable insights for future studies on rice's response to injury, insect attack, and abiotic stresses.
Project description:Transcriptional profiling of MIT knockdown plants. MIT is a mitochondrial Fe transporter essential for rice growth and development. The goal was to determine the effects of MIT on global rice gene expression. Control condition experiment, root or shoot of WT vs. MIT knockdown plant. Two replicates each comparison, including a dye swap.
Project description:5 leaves old rice plantlets were infected with Magnaporthe grisea spores and zero, two hours and twenty four houres after infection samples were collected
Project description:We analyzed the transcriptome profiles for rice grain from heat-tolerant and -sensitive lines in response to high night temperatures at the early milky stage using the Illumina Sequencing method. On the 8th day after the labeled florets flowered, plants with the same label were transferred to chambers and maintained at a temperature of 38.0â±â0.5°C (treatment) or 25.0â±â0.5°C (control) for the dark period (10 h), and 26.0â±â0.5°C (both treatment and control) for the light period (14 h). Three biological replicates of the temperature treatments were grown under the same conditions. After 48 h of treatment, samples containing 45 grains with labels from the same region (middle to bottom part) of labelled ears were harvested, packed in aluminum foil, and flash-frozen in liquid nitrogen until further use. A total of 12 rice grain samples were harvested, i.e., controls (TC1, TC2 and TC3) and treatments (TT1, TT2 and TT3) of the three biological replicates of the heat-tolerant line, and controls (SC1, SC2 and SC3) and treatments (ST1, ST2 and ST3) of the three biological replicates of the heat-sensitive line.
Project description:In this study, we used RNA-Seq to understand the mechanisms of Cd toxicity, cellular detoxification and protection pathways in response to Cd in rice roots. To gain additional insight into the rice transcriptomic response to environmental Cd stress, 15-day-old rice seedlings were treated with 10 or 100 μM solutions of Cd2+, or without Cd (control), for 24 h, at which point root samples were harvested and labeled as Cd+, Cd++, and control, respectively. These samples were used for 101 bp paired-end (PE) deep sequencing on an Illumina HiSeq 2500 platform.
Project description:Artificial miRNA mediated knock-down ago18 transgenic lines [ago18(1), ago18(2)] showed developmentally compromised phenotype in both vegetative and reproductive tissues compared to wild-type control. We have performed small RNA seq to investigate underlying molecular mechanism and to reveal functional role of AGO18 in rice.