Project description:We investigated differentially regulated genes in human myelomonocytic U937 cells in 20s and 5min microgravity and in hypergravity and compared expression profiles to identify potential gravity-regulated genes and adaptation processes.
Project description:We investigated differentially regulated genes in human Jurkat T lymphocytic cells in 20s and 5min microgravity and in hypergravity and compared expression profiles to identify potential gravity-regulated genes and adaptation processes.
Project description:We investigated differentially regulated genes in human myelomonocytic U937 cells in 20s and 5min microgravity and in hypergravity and compared expression profiles to identify potential gravity-regulated genes and adaptation processes.
Project description:We investigated differentially regulated genes in human Jurkat T lymphocytic cells in 20s and 5min microgravity and in hypergravity and compared expression profiles to identify potential gravity-regulated genes and adaptation processes.
Project description:We investigated the dynamics of immediate and initial gene expression response to different gravitational environments in human Jurkat T lymphocytic cells and compared expression profiles to identify potential gravity-regulated genes and adaptation processes. We used the Affymetrix GeneChip® Human Transcriptome Array 2.0 containing 44,699 protein coding genes and 22,829 non-protein coding genes and performed the experiments during a parabolic flight and a suborbital ballistic rocket mission to cross-validate gravity-regulated gene expression through independent research platforms and different sets of control experiments to exclude other factors than alteration of gravity. We found that gene expression in human T cells rapidly responded to altered gravity in the time frame of 20 s and 5 min. The initial response to microgravity involved mostly regulatory RNAs. We identified three gravity-regulated genes which could be cross-validated in both completely independent experiment missions: ATP6V1A/D, a vacuolar H + -ATPase (V-ATPase) responsible for acidification during bone resorption, IGHD3-3/IGHD3-10, diversity genes of the immunoglobulin heavy-chain locus participating in V(D)J recombination, and LINC00837, a long intergenic non-protein coding RNA. Due to the extensive and rapid alteration of gene expression associated with regulatory RNAs, we conclude that human cells are equipped with a robust and efficient adaptation potential when challenged with altered gravitational environments.
Project description:Genome-wide transcriptional profiling shows that reducing gravity levels in the International Space Station (ISS) causes important alterations in Drosophila gene expression. However, simulation experiments on ground, without space constraints, show weaker effects than space environment. A global and integrative analysis using the M-bM-^@M-^\gene expression dynamics inspectorM-bM-^@M-^] (GEDI) self-organizing maps, reveals a subtle response of the transcriptome using different populations and microgravity and hypergravity simulation devices. These results suggest that, in addition to behavioural responses that can be detected also at the gene expression level, the transcriptome is finely tuned to normal gravity. The alteration of this constant parameter on Earth can have effects on gene expression that depends both on the environmental conditions and the ground based facility used to compensate the gravity vector. Alternative and commons effects of mechanical facilities, like the Random Positioning Machine and a centrifuge, and strong magnetic field ones, like a cryogenically cooled superconductive magnet, are discussed. We compare the effects over the gene expression profile of different gender/age Drosophila imagoes in 3-4 days-long experiments under altered gravity conditions into three GBF ("Ground Based Facilities" for micro/hyper- gravity simulation) using whole genome microarray platforms. Descriptions of different GBFs ("treatments"): LDC means "Large Diameter Centrifuge". Samples can be placed under three conditions: inside LDC (at certain g level), at the LDC rotational control and at external 1g control (outside the LDC). RPM means "Random Positioning Machine". Samples can be placed under two conditions: inside RPM (at nearly 0g, Microgravity level) and at external 1g control (outside the RPM). At the magnet, means INSIDE the Magnetic levitator (another GBF). Samples can be placed under four conditions: inside Magnet 0g* (at microgravity with magnetic field), inside Magnet at 1g* (internal control with magnetic field) or inside the magnet 2g* (at hypergravity with magnetic field) and at external 1g control (outside the magnet)
Project description:au13-11_gravity - gravity - Cell cycle and cell proliferation are decoupled under altered gravity conditions. We have previously shown that semisolid cell cultures of Arabidopsis suffer overall genome changes in response to altered gravity and also that cell cycle stages duration is altered. By using synchronized cell cultures we will demonstrate the precise alterations in cell cycle duration and also the transcriptional signature in any of them. - Experiments consists on exposures of Arabidopsis cell cultures to 1g control/simulated microgravity (RPM) conditions. Asynchronous cells exposed for 14 h + Syncronous populations choosen to have an enrichment of cell cycle phases were used (being T7/T10 samples on G2 phase, T14/T16 samples on G1 phase). 6 dye-swap - time course,treated vs untreated comparison
Project description:Genome-wide transcriptional profiling shows that reducing gravity levels in the International Space Station (ISS) causes important alterations in Drosophila gene expression. However, simulation experiments on ground, without space constraints, show weaker effects than space environment. A global and integrative analysis using the “gene expression dynamics inspector” (GEDI) self-organizing maps, reveals a subtle response of the transcriptome using different populations and microgravity and hypergravity simulation devices. These results suggest that, in addition to behavioural responses that can be detected also at the gene expression level, the transcriptome is finely tuned to normal gravity. The alteration of this constant parameter on Earth can have effects on gene expression that depends both on the environmental conditions and the ground based facility used to compensate the gravity vector. Alternative and commons effects of mechanical facilities, like the Random Positioning Machine and a centrifuge, and strong magnetic field ones, like a cryogenically cooled superconductive magnet, are discussed.