Project description:The consistent cold temperatures and large amount of precipitation in the Olympic and Cascade ranges of Washington State are thought to increase atmospheric deposition of contaminants in these high elevation locations. Total mercury and 28 organochlorine compounds were measured in composite, whole fish samples collected from 14 remote lakes in the Olympic, Mt. Rainer, and North Cascades National Parks. Mercury was detected in fish from all lakes sampled and ranged in concentration from 17 to 262 ug/kg wet weight. Only two organochlorines, total polychlorinated biphenyls (tPCB) and dichlorodiphenyldichloroethylene (DDE), were detected in fish tissues (concentrations <25 ug/kg wet weight). No organochlorines were detected in sediments (MRL ≈1-5 ug/kg), while median total and methyl mercury in sediments were 30.4 and 0.34 ug/kg (dry weight), respectively. Using a targeted rainbow trout cDNA microarray with known genes, we detected significant differences in liver transcriptional responses, including metabolic, endocrine, and immune-related genes, in fish collected from a contaminated lake compared to a lake with a lower contaminant load. Overall, our results suggest that local urban areas are contributing to the observed contaminant patterns, while the transcriptional changes point to a biological response associated with exposure to these contaminants in fish. Specifically, the gene expression pattern leads us to hypothesize a role for mercury in disrupting the metabolic and reproductive pathways in fish from high elevation lakes in western Washington. Keywords: High altitude lakes, mercury, salmonids, organochlorines
Project description:Aquatic microbial communities contain a vast amount of genetic diversity and we have much to learn about how this manifests to functional diversity. Existing long-term time series data includes 16S tags, metagenomes, single amplified genomes (SAGs), and genomes from metagenomes (GFMs). Information about functional diversity and metabolic capabilities is often unavailable. The study sites include three lakes that are the subject of intense study through the North Temperate Lakes Long Term Ecological Research site: Sparkling Lake (oligotrophic), Lake Mendota (eutrophic), and Trout Bog Lake (dystrophic).
The work (proposal:https://doi.org/10.46936/10.25585/60000947) conducted by the U.S. Department of Energy Joint Genome Institute (https://ror.org/04xm1d337), a DOE Office of Science User Facility, is supported by the Office of Science of the U.S. Department of Energy operated under Contract No. DE-AC02-05CH11231.
Project description:In this study we used metaproteomics to discern the metabolism and physiology of the microorganisms occurring in the phototrophic mats of four soda lakes in the interior of British Columbia, Canada. Binned and assembled metagenomes were used as the database for protein identification.
Project description:Prostate of SD rats was injected with 0.1 ml 1% carrageenan to induce chronic nonbacterial prostatitis, and the control rats injected with sterile saline. Then, the cecal contents were collected for 16S rDNA sequencing.
2021-07-07 | GSE179639 | GEO
Project description:16S rDNA Community Survey of High Elevation Alpine Lakes