Project description:We have proposed the existence of a threshold for brain damage, in terms of hydroxyl radical production in rat striatum, between poisoning of carbon monoxide (CO) at 1000 ppm and 3000 ppm, where blood CO-hemoglobin levels reach approximately 50% and over 70%, respectively. To search for factors involved in brain damage, we examined the effects of air, 1000 ppm CO, 3000 ppm CO and 5% O2 (hypoxic conditions comparable with those by 3000 ppm CO) on gene expression in rat striatum, using microarray analysis.
Project description:To explore the gene expression prolife in the chroniclly hypoxic myocardium, 8 rats were divided randomly into normoxic (n=4) or chroniclly hypoxic (n=4) group, and were exposed to room air (21% O2) or continued hypoxia (10% O2) for 4 weeks. Heart tissues were collected and RNA sequencing was applied to detect the overall gene expression prolife. Genes with adjusted P-value ≤0.01 (corrected by Benjamini-Hochberg) and |log2_ratio|≥0.585 are identified as differentially expressed genes. RNA sequencing identified a total of 2014 gene with statistical significances, among which 1260 genes were significantlly increased and 754 genes were significantlly decreased. The results showed that gene expression profiling was perturbed in chronically hypoxic myocardium.
Project description:A series of two color gene expression profiles obtained using Agilent 44K expression microarrays was used to examine sex-dependent and growth hormone-dependent differences in gene expression in rat liver. This series is comprised of pools of RNA prepared from untreated male and female rat liver, hypophysectomized (‘Hypox’) male and female rat liver, and from livers of Hypox male rats treated with either a single injection of growth hormone and then killed 30, 60, or 90 min later, or from livers of Hypox male rats treated with two growth hormone injections spaced 3 or 4 hr apart and killed 30 min after the second injection. The pools were paired to generate the following 6 direct microarray comparisons: 1) untreated male liver vs. untreated female liver; 2) Hypox male liver vs. untreated male liver; 3) Hypox female liver vs. untreated female liver; 4) Hypox male liver vs. Hypox female liver; 5) Hypox male liver + 1 growth hormone injection vs. Hypox male liver; and 6) Hypox male liver + 2 growth hormone injections vs. Hypox male liver. A comparison of untreated male liver and untreated female liver liver gene expression profiles showed that of the genes that showed significant expression differences in at least one of the 6 data sets, 25% were sex-specific. Moreover, sex specificity was lost for 88% of the male-specific genes and 94% of the female-specific genes following hypophysectomy. 25-31% of the sex-specific genes whose expression is altered by hypophysectomy responded to short-term growth hormone treatment in hypox male liver. 18-19% of the sex-specific genes whose expression decreased following hypophysectomy were up-regulated after either one or two growth hormone injections. Finally, growth hormone suppressed 24-36% of the sex-specific genes whose expression was up-regulated following hypophysectomy, indicating that growth hormone acts via both positive and negative regulatory mechanisms to establish and maintain the sex specificity of liver gene expression. For full details, see V. Wauthier and D.J. Waxman, Molecular Endocrinology (2008)
Project description:Living organisms are intricate systems with dynamic internal processes. Their RNA, protein, and metabolite levels fluctuate in response to variations in health and environmental conditions. Among these, RNA expression is particularly accessible for comprehensive analysis, thanks to the evolution of high throughput sequencing technologies in recent years. This progress has enabled researchers to identify unique RNA patterns associated with various diseases, as well as to develop predictive and prognostic biomarkers for therapy response. Such cross-sectional studies allow for the identification of differentially expressed genes (DEGs) between groups, but they have limitations. Specifically, they often fail to capture the temporal changes in gene expression following individual perturbations and may lead to significant false discoveries due to inherent noise in RNA sequencing sample preparation and data collection. To address these challenges, our study hypothesized that frequent, longitudinal RNA sequencing (RNAseq) analysis of blood samples could offer a more profound understanding of the temporal dynamics of gene expression in response to drug interventions, while also enhancing the accuracy of identifying genes influenced by these drugs. In this research, we conducted RNAseq on 829 blood samples collected from 84 Sprague-Dawley lab rats. Excluding the control group, each rat was administered one of four different compounds known for liver toxicity: tetracycline, isoniazid, valproate, and carbon tetrachloride. We developed specialized bioinformatics tools to pinpoint genes that exhibit temporal variation in response to these treatments.
Project description:In order to establish a rat embryonic stem cell transcriptome, mRNA from rESC cell line DAc8, the first male germline competent rat ESC line to be described and the first to be used to generate a knockout rat model was characterized using RNA sequencing (RNA-seq) analysis.
Project description:Gene expression profiles in rat lung following intratracheal instillation with short size single-wall and multi-wall carbon nanotubes
Project description:Analysis of LBNF1 rat testes from controls, containing both somatic and all germ cell types and from irradiated rats in which all cells germ cells except type A spermatgogonia are eliminated. Results provide insight into distinguishing germ and somatic cell genes and identification of somatic cell genes that are upregulated after irradiation.
Project description:Severe carbon monoxide (CO) poisoning can induce structural damage to the nervous system, leading to long-term cognitive dysfunction in patients. The proper termination of the inflammatory response caused by neuronal cell damage is a prerequisite for tissue repair. Macrophages can clear cell corpses/fragments caused by brain injury through efferocytosis and produce cytokines to coordinate immune responses, thereby promoting neuronal repair and regeneration. However, in the microenvironment of the nervous system affected by CO poisoning, the function of macrophages is inhibited. Our study found that CLCF1 can regulate the secretion of cytokines such as TNF-α, IL-1β, and IL-10 through the NF-κB signaling pathway, thereby affecting neuronal cell repair and regeneration.