Project description:Activation of Wnt/β-catenin signaling plays a central role in the development and progression of colorectal cancer (CRC). Previously, we demonstrated that the Wnt transcription factor, TCF7L2, was overexpressed in primary rectal cancers that were resistant to chemoradiotherapy (CRT), and that TCF7L2 functionally mediates resistance of CRC cells to CRT. However, it remained unclear whether the resistance was mediated by a TCF7L2 inherent mechanism or Wnt/β-catenin signaling in general. We now show that silencing of β-catenin resulted in sensitization of the CRC cell lines LS1034, SW480, and SW837 to CRT, demonstrating a relationship between Wnt/β-catenin signaling and CRT resistance. To investigate the potential role of Wnt/β-catenin signaling in controlling therapeutic responsiveness, non-tumorigenic RPE-1 cells were stimulated with Wnt-3a, a physiological ligand at the Frizzled receptor, which significantly increased resistance to CRT. This effect could be recapitulated by overexpression of mutated, undegradable β-catenin (S33Y). Again, this resulted in a significantly boosted resistance of RPE-1 cells to CRT, which was abrogated by siRNA-mediated silencing of β-catenin. Consistent with these findings, we observed higher expression levels of active (unphosphorylated) β-catenin as well as increased TCF/LEF reporter activity in SW1463 cells that evolved radiation-resistance due to repeated radiation-treatment. Global gene expression profiling identified several altered pathways associated with treatment response as a consequence of Wnt/β-catenin pathway activation, sheading new light on PPARD signaling as a possible mechanism of Wnt mediated resistance. Hence, synergistic pathway inhibition of either Wnt and/or one of the downstream-pathways may represent a promising strategy to increase therapeutic responsiveness to CRT.
Project description:Strong activation of the oncogenic Wnt/beta-catenin pathway is a main mechanism of resistance to FOXO3a-induced apoptosis promoted by PI3K and AKT inhibitors in colorectal cancer (CRC). Reducing Wnt/beta-catenin activity would sensitize colorectal tumors to these inhibitors. However, no Wnt/beta-catenin signaling inhibitor has proven clinical potential yet. Recently, inhibitors that block tankyrases were shown to reduce colon cancer cell proliferation by decreasing nuclear beta-catenin. We aim to identify determinants of response to these novel Wnt-inhibitors. Therefore, we treated in vivo three different patient-derived xenograft models (PDX; P2, P5 and P30) growing subcutaneously in NOD SCID mice with the novel tankyrase inhibitor NVP-TNKS656.
Project description:In colorectal cancer, p53 is commonly inactivated, associated with chemo-resistance, and marks the transition from non-invasive to invasive disease. Cancers, including colorectal cancer, are thought to be diseases of aberrant stem cell populations, as stem cells are able to self-renew, making them long-lived enough to acquire mutations necessary to manifest the disease. We have shown that extracts from sweet sorghum stalk components eliminate colon cancer stem cells (CCSC) in a partial p53-dependent fashion. However, the underlying mechanisms are unknown. In the present study, CCSC were transfected with short hairpin-RNA against p53 (CCSC p53 shRNA) and treated with sweet sorghum phenolics extracted from different plant components (dermal layer, leaf, seed head and whole plant). While all components demonstrated anti-proliferative and pro-apoptotic effects in CCSC, phenolics extracted from the dermal layer and seed head were more potent in eliminating CCSC by elevating caspases 3/7 activity, PARP cleavage, and DNA fragmentation in a p53-dependent and p53-independent fashion, respectively. Further investigations revealed that the anti-proliferative and pro-apoptotic effects were associated with decreases in beta-catenin protein levels, and beta-catenin targets cyclin D1, cMyc, and survivin. These results suggest that the anti-proliferative and pro-apoptotic effects of sweet sorghum extracts against human colon cancer stem cells are via suppression of Wnt/beta-catenin pro-survival signaling in a p53-dependent (dermal layer) and partial p53-independent (seed head) fashion. LCMS used to identify phenolic compounds associated with extract activity
Project description:Wnt/β-catenin signaling is activated in colorectal cancer (CRC) and is involved in CRC growth. Tankyrase, a poly(ADP-ribose) polymerase family member, destabilizes Axin and positively regulates the Wnt/β-catenin signaling. Tankyrase inhibitors efficiently suppress CRC cell proliferation. We established 320-IWR cells, which showed resistance to tankyrase inhibitor IWR-1, from human CRC COLO-320DM cells. We analyzed gene expression profile of 320-IWR cells (320IWR_1,_2) and parental COLO-320DM cells (COLO320_1,_2).
Project description:Canonical Wnt signaling output is mediated by β-catenin, which interacts with LEF/TCF transcription factors and recruits a general transcriptional activation complex to its C-terminus. Its N-terminus binds BCL9/9L proteins, which bind co-activators that in mammals contribute to fine-tuning the transcriptional output. We found that a BCL9/9L-dependent gene expression signature was strongly associated with patient outcome in colorectal cancer and that stem cell and mesenchymal genes determine its prognostic value. Abrogating BCL9/9L-β-catenin signaling in independent mouse colorectal cancer models resulted in virtual loss of these traits, and oncogenic intestinal organoids lacking BCL9/9L proteins proved no longer tumorigenic. Our findings suggest that the BCL9/9L arm of Wnt-β-catenin signaling sustains a stemness-to-differentiation equilibrium in colorectal cancer, which critically affects disease outcome. Mutational activation of the Wnt pathway is a key oncogenic event in colorectal cancer. Targeting the pathway downstream of activating mutations is challenging, and the therapeutic window is limited by intestinal toxicity. Contrasting with phenotypes caused by inactivating key Wnt pathway components, ablation of BCL9/9L proteins in adult mice indicated that they were dispensable for intestinal homeostasis, consistent with their role in tuning transcription. Cancer stem cells are increasingly recognized as responsible for tumor recurrence. The correlation between stemness traits in colorectal cancer models and BCL9/9L-β-catenin signaling suggests that high Wnt signaling output is required for their maintenance. Our findings suggest that pruning Wnt-β-catenin signaling might be well tolerated and prove sufficient for trimming stemness traits and improving disease outcome.
Project description:Background: Wnt signaling maintains the undifferentiated state of intestinal crypt progenitor cells by inducing the formation of nuclear TCF4/beta-catenin complexes. In colorectal cancer, activating mutations in Wnt pathway components cause inappropriate activation of TCF4/beta-catenin -driven transcription. Despite the passage of a decade after the discovery of TCF4 and beta-catenin as the molecular effectors of the Wnt signal, few transcriptional activators essential and unique to the regulation of this transcription program have been found. Methodology/Principal Findings: Using proteomics, we identified the leukemia-associated Mllt10/Af10 and the methyltransferase Dot1l, as Tcf4/beta-catenin interactors in mouse small intestinal crypts. Mllt10/Af10-Dot1l, essential for transcription elongation, are recruited to Wnt target genes in a beta-catenin -dependent manner, resulting in H3K79 methylation over their coding regions in vivo in proliferative crypts of mouse small intestine, in colorectal cancer and Wnt-inducible HEK293T cells. Depletion of MLLT10/AF10 in colorectal cancer and Wnt-inducible HEK293T cells followed by expression array analysis identifies MLLT10/AF10 and DOT1L as essential activators dedicated to Wnt target gene regulation. In contrast, previously published b-catenin coactivators p300 and beta-catenin displayed a more pleiotropic target gene expression profile controlling Wnt and other pathways. tcf4, mllt10/af10 and dot1l are co-expressed in Wnt-driven tissues in zebrafish and essential for Wnt-reporter activity. Intestinal differentiation defects in apc-mutant zebrafish can be rescued by depletion of Mllt10 and Dot1l, establishing these genes as activators downstream of Apc in Wnt target gene activation in vivo. Morpholino-depletion of mllt10/af10-dot1l in zebrafish results in defects in intestinal homeostasis and a significant reduction in the in vivo expression of direct Wnt target genes and in the number of proliferative intestinal epithelial cells. Conclusions/Significance: We conclude that Mllt10/Af10-Dot1l are essential, dedicated activators of Wnt-dependent transcription, critical for maintenance of intestinal proliferation and homeostasis. The methyltransferase Dot1l may present an attractive candidate for drug targeting in colorectal cancer. 6 samples for Ls174T cells: si-b-catenin against si-control and dyeswap of it, si-control, si-MLLT10, si-BRG1 and si-P300 are hybridized against common reference RNA; 6 samples of HEK293T cells: Wnt3A or control medium (CM) induction for 9 hours, si-MLLT10, si-DOT1L, si-BRG1 and si-P300 upon 9 hour Wnt3A induction are all hybridized against common reference RNA
Project description:Breast cancer is one of the most common types of cancer in women. One key signaling pathway known to regulate tumor growth, metabolic adaptation, and cellular stress response in breast cancer is Wnt signaling. Breast cancer patients, specifically triple negative breast cancer (TNBC), with upregulated Wnt signaling often have a poor clinical prognosis. However, the effects of Wnt/β-catenin signaling on the nucleolus and the resultant impact on cancer development and progression remain unclear. A notable reduction was observed in the number of nucleoli per nucleus in response to Wnt/β-catenin signaling inhibition in multiple TNBC cell lines. Our comparative proteomic analysis revealed several changes in the composition of the nucleolar proteome of TNBC cells upon inhibition of Wnt signaling. Overall, we demonstrate that Wnt/β-catenin signaling will affects nucleolar functionality and thus influences breast cancer progression. Understanding the role of Wnt signaling in the nucleolus and breast cancer is a critical step towards developing novel therapeutic options for the treatment of breast cancer.
Project description:The Notch signaling pathway regulates fate decision, proliferation and differentiation of intestinal epithelial cells. However, the role of Notch signaling in colorectal cancer progression is largely unknown. Here we show that Notch signaling suppresses the progression of colorectal tumorigenesis, even though it augments tumor initiation. In contrast to adenomas of Apcmin mice, Notch-inactivated Apcmin adenomas showed more malignant characteristics, such as submucosal invasion and loss of glandular pattern. Conversely, Notch-activated Apcmin adenomas showed a reversion from high-grade to low-grade features, such as the restoration of adherent junctions. Expression profiling revealed that Notch signaling promotes the differentiation of tumor cells with down regulation of Wnt/beta-catenin target genes and inhibition of epithelial-mesenchymal transition. Comparison of mouse and human expression profiles also suggests the common role of Notch in inhibition of tumor progression. Interestingly, Notch signaling suppressed the expression of beta-catenin responsive genes through chromatin modification of Tcf4/beta-catenin binding sides. Our results suggest that Notch signaling has dual roles in colorectal tumorigenesis: promoting adenoma initiation, while inhibiting tumor progression to colorectal cancer. mRNAs from normal (WT, Notch-activated and Notch-inactivated) and tumor (WT, Notch-activated and Notch-inactivated) tissues were profiled.
Project description:Genetic and epigenetic defects in Wnt/ß-catenin signaling play important roles in colorectal cancer progression. Here we identify DACT3, a member of the DACT (Dpr/Frodo) gene family, as a negative regulator of Wnt/ß-catenin signaling that is transcriptionally repressed in colorectal cancer. Unlike other Wnt signaling inhibitors that are silenced by DNA methylation, DACT3 repression is associated with bivalent histone modifications. Remarkably, DACT3 expression can be robustly de-repressed by a pharmacological combination that simultaneously targets both histone methylation and deacetylation, leading to strong inhibition of Dishevelled (Dvl)-mediated Wnt/ß-catenin signaling and massive apoptosis of colorectal cancer cells. Our study identifies DACT3 as an important regulator of Wnt/ß-catenin signaling in colorectal cancer and suggests a potential strategy for therapeutic control of Wnt/ß-catenin signaling in colorectal cancer. Keywords: Colon cancer cell line
Project description:Genetic and epigenetic defects in Wnt/?-catenin signaling play important roles in colorectal cancer progression. Here we identify DACT3, a member of the DACT (Dpr/Frodo) gene family, as a negative regulator of Wnt/ß-catenin signaling that is transcriptionally repressed in colorectal cancer. Unlike other Wnt signaling inhibitors that are silenced by DNA methylation, DACT3 repression is associated with bivalent histone modifications. Remarkably, DACT3 expression can be robustly de-repressed by a pharmacological combination that simultaneously targets both histone methylation and deacetylation, leading to strong inhibition of Dishevelled (Dvl)-mediated Wnt/?-catenin signaling and massive apoptosis of colorectal cancer cells. Our study identifies DACT3 as an important regulator of Wnt/ß-catenin signaling in colorectal cancer and suggests a potential strategy for therapeutic control of Wnt/ß-catenin signaling in colorectal cancer. This SuperSeries is composed of the SubSeries listed below.