Project description:<p>The HTN-IR Study, funded by NHLBI, was designed to explore genetic contributions to hypertension and glucose homeostasis traits among Hispanics using a family-based design. The baseline examination of the cohort included the euglycemic hyperinsulinemic clamp test from which the two key phenotypes were obtained: insulin sensitivity (M) and metabolic clearance rate of insulin (MCRI). Genome-wide genotyping was obtained under separate funding by NIDDK as a part of the GUARDIAN (Genetics Underlying Diabetes in Hispanics) Consortium. </p>
Project description:To explore genes that could be responsible to insulin in insulin resistance states (IR), we generated the IR mice models (mice after 6 weeks of high-fat feeding).
Project description:Kynureninase is a member of a large family of catalytically diverse but structurally homologous pyridoxal 5'-phosphate (PLP) dependent enzymes known as the aspartate aminotransferase superfamily or alpha-family. The Homo sapiens and other eukaryotic constitutive kynureninases preferentially catalyze the hydrolytic cleavage of 3-hydroxy-l-kynurenine to produce 3-hydroxyanthranilate and l-alanine, while l-kynurenine is the substrate of many prokaryotic inducible kynureninases. The human enzyme was cloned with an N-terminal hexahistidine tag, expressed, and purified from a bacterial expression system using Ni metal ion affinity chromatography. Kinetic characterization of the recombinant enzyme reveals classic Michaelis-Menten behavior, with a Km of 28.3 +/- 1.9 microM and a specific activity of 1.75 micromol min-1 mg-1 for 3-hydroxy-dl-kynurenine. Crystals of recombinant kynureninase that diffracted to 2.0 A were obtained, and the atomic structure of the PLP-bound holoenzyme was determined by molecular replacement using the Pseudomonas fluorescens kynureninase structure (PDB entry 1qz9) as the phasing model. A structural superposition with the P. fluorescens kynureninase revealed that these two structures resemble the "open" and "closed" conformations of aspartate aminotransferase. The comparison illustrates the dynamic nature of these proteins' small domains and reveals a role for Arg-434 similar to its role in other AAT alpha-family members. Docking of 3-hydroxy-l-kynurenine into the human kynureninase active site suggests that Asn-333 and His-102 are involved in substrate binding and molecular discrimination between inducible and constitutive kynureninase substrates.
Project description:Insulin resistance is accompanied by chronic hyperinsulinemia and is associated with type 2 diabetes and other metabolic syndromes in a substantial portion of the population. The risk factors and features of insulin resistance have been thoroughly described but its mechanistic triggers are still under study. Here we consider a condensate model for insulin receptor (IR) function in normal conditions and when dysregulated in chronic hyperinsulinemia-induced insulin resistance. We find that IR is incorporated into liquid-like condensates at the plasma membrane, in the cytoplasm and in the nucleus of liver cells, and provide evidence for insulin-dependent IR function in condensates. Insulin stimulation promotes further incorporation of IR into these dynamic condensates in insulin sensitive cells, which form and dissolve on short, sub-minute time-scales. In contrast, insulin stimulation does not promote further incorporation of IR into condensates in insulin resistant cells, where IR molecules within condensates exhibit less dynamic behavior. Metformin treatment of insulin resistant cells rescues IR condensate dynamics and insulin responsiveness. Insulin resistant cells experience high levels of oxidative stress, which causes reduced condensate dynamics, and treatment of these cells with metformin reduces ROS levels and returns condensates to their normal dynamic behavior. The condensate model we propose can account for features of normal and dysregulated insulin response and has implications for improved therapeutic approaches to insulin resistance.