Project description:To investigate the interaction of intra-amoebal C. jejuni with the transient host A. castellanii. We then performed gene expression profiling analysis using data obtained from RNA-seq of control and intra-amoebal C. jejuni.
Project description:We report the transcriptome of M. abscessus in amoebae and macrophages. M. abscessus intra-amoebal and intra-macrophagic transcriptomes demonstrate of the potential of M. abscessus to adapt to an intracellular lifestyle, though amoebae largely contribute to the enhancement of M. abscessus survival macrophages.
Project description:Transcriptional profiling of D. discoideum revealed sets of genes whose expression is enriched in amoebae interacting with different species of bacteria, including sets that appear specific to amoebae interacting with Gram(+), or with Gram(-) bacteria. In a genetic screen utilizing the growth of mutant amoebae on a variety of bacteria as a phenotypic readout, we identified amoebal genes that are only required for growth on Gram(+) bacteria, including one that encodes the cell surface protein gp130, as well as several genes that are only required for growth on Gram(-) bacteria including one that encodes a putative lysozyme, AlyL. These genes are required for parts of the transcriptional response of wild-type amoebae, and this allowed their classification into potential response pathways. Transcriptional profiling of amoebal response to different bacteria.
Project description:In this report, we have developed a rapid oligonucleotide microarray detection technique to identify the most common ten Legionella spp.. The sensitivity of the detection was at 1.0 ng with genomic DNA or 13 CFU/100 mL with Legionella cultures. The microarray detected seven air conditioner-condensed water samples with 100% accuracy, validating the technique as a promising method for applications in basic microbiology, clinical diagnosis, food safety, and epidemiological surveillance. The phylogenetic study based on the ITS has also revealed interestingly that the non-pathogenic L. fairfieldensis is the closest to L. pneumophila than the nine other pathogenic Legionella spp..
Project description:To further development of our gene expression approch to intracellular pathogenic bacterial controlling, we have employed castamized Neochlamydia S13 genomic microarray as a discovery platform to identy genes with the potential to inhibit Legionella growth into hoat amoebae , based on our data that the the amoebae haboring amoebal endosymbiont Neochlamydia S13 (an environmental chlamydia) could evade Legionella infection.
Project description:Legionella pneumophila is a gram-negative opportunistic human pathogen that infects and multiplies in a broad range of phagocytic protozoan and mammalian phagocytes. Based on the observation that small regulatory RNAs (sRNAs) play an important role in controlling virulence-related genes in several pathogenic bacteria, we attempted to test the hypothesis that sRNAs play a similar role in L. pneumophila. We used computational prediction followed by experimental verification to identify and characterize sRNAs encoded in the L. pneumophila genome. A 50-mer probe microarray was constructed to test the expression of predicted sRNAs in bacteria grown under a variety of conditions. This strategy successfully identified 22 expressed RNAs, out of which six were confirmed by northern blot and RACE. One of the identified sRNAs is highly expressed when the bacteria enter post exponential phase and computational prediction of its secondary structure reveals a striking similarity to the structure of 6S RNA, a widely distributed prokaryotic sRNA, known to regulate the activity of σ70-containing RNAP. A 70-mer probe microarray was used to identify genes affected by L. pneumophila 6S RNA in stationary phase. The 6S RNA encoded by the ssrS gene positively regulates expression of genes encoding type IVB secretion system effectors, stress response genes such as groES and recA as well as many genes with unknown or hypothetical functions. Deletion of 6S RNA significantly reduced L. pneumophila intracellular multiplication in both protist and mammalian host cells, but had no detectable effect on growth in rich media.
Project description:We developed a single-tube multiplex real-time PCR assay capable of simultaneously detecting and discriminating Legionella spp., Legionella pneumophila, and Legionella pneumophila serogroup 1 in primary specimens. Evaluation of 21 clinical specimens and 115 clinical isolates demonstrated this assay to be a rapid, high-throughput diagnostic test with 100% specificity that may aid during legionellosis outbreaks and epidemiologic investigations.
Project description:We report a case of infectious endocarditis attributable to Legionella longbeachae. L. longbeachae is usually associated with lung infections. It is commonly found in composted waste wood products. L. longbeachae should be regarded as an agent of infectious endocarditis, notably in the context of gardening involving handling of potting soils.