Project description:How plants determine the final size of growing cells is an important, yet unanswered question. Root hairs provide an excellent model system to study this question since their final cell size is remarkably constant under given environmental conditions. In this study we demonstrate that a trihelix transcription factor GT-2-LIKE1 (GTL1) and its homolog DF1 repress root hair growth in Arabidopsis. Our transcriptional data, combined with genome-wide chromatin binding data, show that GTL1 and DF1 directly bind the RSL4 promoter and regulate its expression to repress root hair growth. Our data further show that GTL1 and RSL4 regulate each other as well as a set of common downstream genes, many of which have previously been implicated in root hair growth. This study therefore uncovers a core regulatory module that fine-tunes the extent of root hair growth by orchestrated actions of opposing transcription factors.
Project description:To understand how GTL1 regulates cell growth, we first identified its potential direct targets by the chromatin immunoprecipitation followed by the hybridization on an Affymetrix Arabidopsis Tiling 1.0R array (ChIP-chip). To enrich the genomic region bound by GTL1 in vivo, we harvested whole aerial parts of 12-day-old gtl1-1 plants complemented with the pGTL:GTL1:GFP constructs and immunoprecipitated the chromatin fragments associated with GTL1-GFP proteins using antibodies against GFP. After applying a cut-off P-values of 0.001of MAT (Model-based analysis of tiling array), we identified a total number of 3,900 putative immediate target genes that showed consistent binding by GTL1.
Project description:We performed a chromatin immunoprecipitation-based microarray experiment (ChIP chip) in order to identify GTL1 and DF1 direct target genes
Project description:To understand how GTL1 regulates cell growth, we first identified its potential direct targets by the chromatin immunoprecipitation followed by the hybridization on an Affymetrix Arabidopsis Tiling 1.0R array (ChIP-chip). To enrich the genomic region bound by GTL1 in vivo, we harvested whole aerial parts of 12-day-old gtl1-1 plants complemented with the pGTL:GTL1:GFP constructs and immunoprecipitated the chromatin fragments associated with GTL1-GFP proteins using antibodies against GFP. After applying a cut-off P-values of 0.001of MAT (Model-based analysis of tiling array), we identified a total number of 3,900 putative immediate target genes that showed consistent binding by GTL1. Two IP chips compared to two Input chips.
Project description:Cyanide is stoichiometrically produced as a co-product of the ethylene biosynthesis pathway, and it is detoxified by the b-cyanoalanine synthase enzyme. The molecular and phenotypical analysis of T-DNA insertional mutants of the mitochondrial b-cyanoalanine synthase CYS-C1 suggests that discrete accumulation of cyanide is not toxic for the plant and does not alter mitochondrial respiration rates, but does act as a strong inhibitor of root hair development. The cys-c1 null allele is defective in root hair formation and accumulates cyanide in root tissues. The root hair defect is phenocopied in wild type plants by the exogenous addition of cyanide to the growth medium and is reversed by the addition of hydroxocobalamin. Hydroxocobalamin not only recovers the root phenotype of the mutant, but also the formation of ROS at the initial step of the root hair tip. Transcriptional profile analysis of the cys-c1 mutant reveals that cyanide accumulation acts as a repressor signal for several genes encoding enzymes involved in cell wall rebuilding and the formation of the root hair tip, as well as genes involved in ethylene signaling and metabolism. Our results demonstrate that mitochondrial b-cyanoalanine synthase activity is essential to maintain a low level of cyanide for proper root hair development.
Project description:The aim of this project is to exploit a shot gun proteomic analysis to better characterize Arabidopsis thaliana rhd2 mutant. The mutant shows a loss of function mutation in RBOHC, a gene encoding NADPH oxidase implicated in root hair elongation.
Project description:Phosphate (Pi) deficiency alters root hair length and frequency as a means of increasing the absorptive surface area of roots. Three partly redundant single R3 MYB proteins, CAPRICE (CPC), ENHANCER OF TRY AND CPC1 (ETC1) and TRIPTYCHON (TRY), positively regulate the root hair cell fate by participating in a lateral inhibition mechanism. To identify putative targets and processes that are controlled by these three transcription factors (TFs), we conducted transcriptional profiling of roots from Arabidopsis thaliana wild-type plants, and cpc, etc1 and try mutants grown under Pi-replete and Pi-deficient conditions using RNA-seq.
Project description:Root hairs are frequently reported to be plastic in response to nutrient supply, but relatively little is known about their development in response to magnesium (Mg) availability, and evidence is scarce about the signals involved in this process. Here, we showed that both density and length of root hairs of Arabidopsis decreased logarithmically with increasing Mg supply in the media , which correlated with the initiation of new trichoblast files and likelihood of trichoblasts to form hairs. Low Mg resulted in greater concentrations of reactive oxygen species (ROS) and Ca2+ in the roots and displayed a stronger tip-focused gradient of ROS and cytosolic Ca2+ concentration ([Ca2+]c) during initiation and elongation of root hairs. This gradient could be eliminated by DPI or BAPTA. Application of either DPI or BAPTA to low Mg treatment blocked the enhanced development of root hairs. The opposite was true when the plants under high Mg were supplied with Ca2+ or PMS. Whole-genome transcriptome data revealed that the maximum differential expressed genes involved in ‘stress’, ‘oxidation reduction’, ‘ion transport and homeostasis’ and ‘cell wall organization’. A greater fraction of morphogenetic H-genes and root hair -specific genes as well as genes involved in ‘cell wall structure’ were up-regulated by 7-d treatment of 0.5 μM Mg but down-regulated by 7-d treatment of 10,000 μM Mg. It is concluded that a distinct and previously poorly characterized response of root hair development to Mg availability is presented in Arabidopsis where ROS and Ca2+ are the signaling molecules that control this response.