Project description:The development of an effective therapy against tauopathies like Alzheimer’s disease (AD) and frontotemporal dementia (FTD) remains challenging, partly due to limited access to fresh brain tissue, the lack of translational in vitro disease models and the fact that underlying molecular pathways remain to be deciphered. Several genes play an important role in the pathogenesis of AD and FTD, one of them being the MAPT gene encoding the microtubule-associated protein tau. Over the past few years, it has been shown that induced pluripotent stem cells (iPSC) can be used to model various human disorders and can serve as translational in vitro tools. Therefore, we generated iPSC harboring the pathogenic FTDP-17 (frontotemporal dementia and parkinsonism linked to chromosome 17) associated mutations IVS10+16 with and without P301S in MAPT using Zinc Finger Nuclease technology. Whole transcriptome analysis of MAPT IVS10+16 neurons reveals neuronal subtype differences, reduced neural progenitor proliferation potential and aberrant WNT signaling. Notably, all phenotypes were recapitulated using patient-derived neurons. Finally, an additional P301S mutation causes an increased calcium bursting frequency, reduced lysosomal acidity and tau oligomerization. Altogether, these tau mutant iPSC lines allow us to study IVS10+16 and P301S mutations in an isogenic background and to unravel a potential link between pathogenic 4R tau expression and FTDP-17.
Project description:The development of an effective therapy against tauopathies like Alzheimer’s disease (AD) and frontotemporal dementia (FTD) remains challenging, partly due to limited access to fresh brain tissue, the lack of translational in vitro disease models and the fact that underlying molecular pathways remain to be deciphered. Several genes play an important role in the pathogenesis of AD and FTD, one of them being the MAPT gene encoding the microtubule-associated protein tau. Over the past few years, it has been shown that induced pluripotent stem cells (iPSC) can be used to model various human disorders and can serve as translational in vitro tools. Therefore, we generated iPSC harboring the pathogenic FTDP-17 (frontotemporal dementia and parkinsonism linked to chromosome 17) associated mutations IVS10+16 with and without P301S in MAPT using Zinc Finger Nuclease technology. Whole transcriptome analysis of MAPT IVS10+16 neurons reveals neuronal subtype differences, reduced neural progenitor proliferation potential and aberrant WNT signaling. Notably, all phenotypes were recapitulated using patient-derived neurons. Finally, an additional P301S mutation causes an increased calcium bursting frequency, reduced lysosomal acidity and tau oligomerization. Altogether, these tau mutant iPSC lines allow us to study IVS10+16 and P301S mutations in an isogenic background and to unravel a potential link between pathogenic 4R tau expression and FTDP-17.
Project description:Energy metabolism is a key aspect of cardiomyocyte biology. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) are a promising tool for biomedical application, but they are immature and have not undergone metabolic shift related to early postnatal development. Cultivation of hiPSC-CM in 3D engineered heart tissue (EHT) format leads to morphological maturation. This study compared the mitochondrial and metabolic state of hiPSC-CM in standard 2D culture and the EHT format and determined the influence of contractile activity. HiPSC-CM in EHTs showed ~2-fold higher number of mitochondria (electron microscopy), mitochondrial mass (mitotracker), DNA (Mt-ND1, Mt-ND2), and protein abundance (proteome) than in 2D culture. While hiPSC-CM exhibited the principal ability to use glucose, lactate and fatty acids as energy substrates irrespective of culture format, hiPSC-CM in 3D performed more oxidation of glucose, lactate and fatty acid, and less anaerobic glycolysis. The increase in mitochondrial mass and DNA in 3D was diminished by pharmacological inhibition of contractile force, suggesting that contractile work participates in mitochondrial development hiPSC-CM. In conclusion, contractile work in the EHT format contributes to metabolic maturation of hiPSC-CM.
Project description:While human embryonic stem cells (hESCs) are predisposed towards chromosomal aneploidities on 12, 17, 20 and X, rendering them susceptible to transformation, the specific genes expressed are not yet known. Here, by identifying the genes over expressed in pluripotent rhesus ESCs (nhpESCs) and comparing them to both their genetically-identical differentiated progeny (teratoma fibroblasts) as well as genetically-related differentiated parental cells (parental skin fibroblasts from whom gametes were used for ESC derivation), we find that some of those over expressed genes in nhpESCs cluster preferentially on rhesus chromosomes 16, 19, 20 and X, homologues of human chromosomes 17, 19, 16 and X respectively. Differentiated parental skin fibroblasts display gene expression profiles closer to nhpESC profiles than to teratoma cells, which are genetically identical to the pluripotent nhpESCs. Twenty over and under expressed pluripotency modulators, some implicated in neurogenesis, have been identified. The over expression of some of these genes discovered using pedigreed nhpESCs derived from prime embryos generated by fertile primates, which is impossible to perform with the anonymously donated clinically-discarded embryos from which hESCs are derived, independently confirms the importance of chromosome 17 and X regions in pluripotency and suggests specific candidates for targeting differentiation and transformation decisions.
Project description:3-dimensional (3D) human induced pluripotent stem cell-derived engineered cardiac tissues (hiPSC-ECTs) have emerged as a promising alternative to 2-dimensional hiPSC-cardiomyocyte monolayer systems because hiPSC-ECTs are a closer representation of endogenous cardiac tissues and more faithfully reflect the relevant cardiac pathophysiology. The ability to perform functional and molecular assessments using the same hiPSC-ECT construct would allow for more reliable correlation between observed functional performance and underlying molecular events, and thus is critically needed. Herein, for the first time, we have established an integrated method that permits sequential assessment of functional properties and top-down proteomics from the same single hiPSC-ECT construct. We quantitatively determined the differences in isometric twitch force and the sarcomeric proteoforms between two groups of hiPSC-ECTs that differed in the duration of time of 3D-ECT culture. Importantly, by using this integrated method we discovered a new and strong correlation between the measured contractile parameters and the phosphorylation levels of alpha-tropomyosin between the two groups of hiPSC-ECTs. The integration of functional assessments together with molecular characterization by top-down proteomics in the same hiPSC-ECT construct enables a holistic analysis of hiPSC-ECTs to accelerate their applications in disease modeling, cardiotoxicity, and drug discovery.