Project description:Regional delivery of oncolytic viruses has been shown to promote immune responses. Malignant pleural effusions comprise an immunosuppressive microenvironment, and the ability of oncolytic viruses to generate immune responses following regional delivery in patients with malignant pleural effusions is unknown. We conducted a phase I clinical trial that studied the intrapleural administration of oncolytic vaccinia virus to establish the safety and feasibility in patients with malignant pleural effusion due to malignant pleural mesothelioma or metastatic disease. In patients with malignant pleural mesothelioma, by correlative analysis of pre- and post-treatment tumor biopsies, we provide insight into tumor-specific viral uptake and associated immune responses.
Project description:We screened pleural effusion proteomes of mesothelioma and lung adenocarcinoma patients to identify novel soluble mesothelioma biomarkers. We performed quantitative mass spectrometry-(MS-) based proteomics using isobaric tags for relative and absolute quantification (iTRAQ) and used narrow range immobilized pH gradient/high resolution isoelectric focusing (IPG/HiRIEF; pH 4 to 4.25) prior to analysis by nano liquid chromatography-coupled MS/MS. Pleural effusions from patients with malignant mesothelioma (n=6), lung adenocarcinoma (n=6), or benign mesotheliosis (n=7) were analyzed, and more than 1,300 proteins were identified.
Project description:Diagnosis of malignant pleural mesothelioma (MPM) is difficult, the most common differential diagnosis being benign pleural diseases and metastatic adenocarcinomas. In order to identify novel markers able to improve diagnostic accuracy, we performed a genome-wide gene expression analysis on tumor cells lines established from pleural effusions (13 MPM and 4 lung adenocarcinoma). Our microarray analysis led to the identification of genes encoding novel cellular and soluble markers whose expression was validated by RT-qPCR. Immunohistochemical staining of tumor biopsies with anti-type-III collagen antibodies were positive in mesothelioma cells but not in adenocarcinoma cells. Using ELISA, we showed that the C-C motif chemokine 2 (CCL2) concentration was significantly higher in pleural effusions from patients with mesothelioma (n = 61) than in subjects with adenocarcinoma (n = 25) or with benign pleural effusions (n = 15): median (interquartile range) = 2.99 ng/mL (1.76-6.01) versus 0.99 ng/mL (0.51-1.83) and 1.47 ng/mL (0.80-1.56), respectively, P < 0.0001. Conversely, the galectin-3 concentration was lower in mesothelioma: 11.50 ng/mL (6.73-23.53) versus 24.74 ng/mL (20.42-70.35) and 17.64 ng/mL (14.81-24.68), respectively, P < 0.0001. The AUC for CCL2 were 0.8030 and 0.7716 for differentiating mesothelioma from adenocarcinoma or benign effusions, respectively. Similarly, the AUC obtained for galectin-3 were 0.7980 and 0.6923, respectively. In conclusion, type-III collagen, CCL2 and galectin-3 are promising new diagnostic markers for mesothelioma.
Project description:RATIONALE: Using BG00001 to insert the gene for interferon-beta into a person’s pleural cavity may improve the body’s ability to fight cancer.
PURPOSE: Phase I trial to study the effectiveness of intrapleural BG00001 in treating patients who have malignant pleural mesothelioma or malignant pleural effusions.
Project description:Soluble HLA (sHLA) molecules released to the plasma, carry their original peptide cargo and provide insight into the protein synthesis and degradation schemes of their source cells and tissues. Other body fluids, such as pleural effusions, may also contain sHLA-peptide complexes, and can potentially serve as a source of tumor antigens since these fluids are drained from the tumor microenvironment. Thus, we developed a methodology for purifying and analysing large pleural effusion sHLA class I peptidomes of patients inflicted with malignancies or benign diseases. The cleared pleural fluids, the cell pellets present in the pleural effusions, and the primary tumor cells cultured from cancer patients’ effusions, were used for immunoaffinity purification of the HLA molecules. The recovered HLA peptides were analyzed by capillary chromatography coupled to tandem mass spectrometry and the resulting LC-MS/MS data was analyzed with the MaxQuant software tool. Large HLA peptidomes were obtained by the analysis of the pleural effusions. The majority of peptides identified from the pleural effusions were defined as HLA ligands that fit the patients’ HLA consensus sequence motifs. The membranal and soluble HLA peptidomes of each individual patient were somewhat similar to each other. Many of the HLA peptides were derived from known tumor-associated antigens, lung-related proteins, and VEGF pathway proteins. Thus, the pleural effusion HLA peptidome of patients with malignant tumors can serve as a rich source of biomarkers for tumor diagnosis and personalized immunotherapy.