Project description:Firstly, cell senescence and anti-oxidant genes were down-regulated by iron deficient mice and iron-specific chelator deferoxamine (DFO) using a DNA microarray. Our data suggested that down-regulation of anti-oxidant genes and cell senescence gene induced oxidative stress in iron-deficient and -specific chelated condition.
Project description:Heme Deficient or Wild Type (normal heme) for 6 hrs with iron chelation by BPS. Single Experiment with Probe Reversal 1. GSM78518 (Cy3) vs GSM78519 (Cy5) 2. GSM78520 (Cy3) vs GSM78521 (Cy5)
Project description:Mouse Iron Distribution Dynamics
Dynamic model of iron distribution in mice. This model includes only normal iron with the parameters that fit the data from Lopes et al. 2010 for mice fed a deficient iron diet.
This model does not include the radioiron tracer species. It is appropriate to study the properties in conditions where no tracers are used (for example for steady state analysis).
Project description:Transcriptional profile of whole roots of wild-type and pye-1 mutants exposed to 24 hours -Fe were generated Global population increases and climate change underscore the need for better comprehension of how plants acquire and process nutrients such as iron. A systems biology approach was taken to elucidate novel regulatory mechanisms involved in plant responses to iron deficiency (-Fe). Using cell-type specific transcriptional profiling we identified a pericycle-specific iron deficiency response, and a previously uncharacterized transcription factor, POPEYE (PYE), that plays an important role in this response. Functional analysis of PYE suggests that it positively regulates growth and development under iron deficient conditions. ChIP-on-chip analysis and transcriptional profiling reveal that PYE helps maintain iron homeostasis by directly and indirectly regulating the expression of ferric reductases, metal ion transporters, iron storage proteins, and other key iron homeostasis genes. In addition to PYE, we also identified a second protein BRUTUS (BTS), which appears to negatively regulate the response to iron deficiency. BTS is a unique putative E3 ligase protein, with metal ion binding and DNA binding domains. PYE and BTS are tightly co-regulated and physically interact with PYE paralogs, one of which is thought to positively regulate expression of genes involved in iron homeostasis. We propose that iron content is sensed within the pericycle where PYE, perhaps in conjunction with BTS and other regulatory proteins, is then activated to control a regulatory network involved in maintaining proper iron distribution in plants. Keywords: Expression analysis To determine how loss of PYE expression affects the transcriptional profile of whole roots, pye-1 mutants and wild-type seeds were germinated under standard growth conditions then transferred to standard media (control, MS media) or iron deficient media (-Fe, 0.3mM Ferrozine in MS media containing no ferrous sulfate). After 24 hours of exposure to +Fe or -Fe whole roots were collected and analyzed.
Project description:Transcriptional profile of whole roots of wild-type and pye-1 mutants exposed to 24 hours -Fe were generated Global population increases and climate change underscore the need for better comprehension of how plants acquire and process nutrients such as iron. A systems biology approach was taken to elucidate novel regulatory mechanisms involved in plant responses to iron deficiency (-Fe). Using cell-type specific transcriptional profiling we identified a pericycle-specific iron deficiency response, and a previously uncharacterized transcription factor, POPEYE (PYE), that plays an important role in this response. Functional analysis of PYE suggests that it positively regulates growth and development under iron deficient conditions. ChIP-on-chip analysis and transcriptional profiling reveal that PYE helps maintain iron homeostasis by directly and indirectly regulating the expression of ferric reductases, metal ion transporters, iron storage proteins, and other key iron homeostasis genes. In addition to PYE, we also identified a second protein BRUTUS (BTS), which appears to negatively regulate the response to iron deficiency. BTS is a unique putative E3 ligase protein, with metal ion binding and DNA binding domains. PYE and BTS are tightly co-regulated and physically interact with PYE paralogs, one of which is thought to positively regulate expression of genes involved in iron homeostasis. We propose that iron content is sensed within the pericycle where PYE, perhaps in conjunction with BTS and other regulatory proteins, is then activated to control a regulatory network involved in maintaining proper iron distribution in plants. Keywords: Expression analysis
Project description:Primary objectives: The aim is to investigate the effects of intravenously administered iron in non-anemic iron deficient patients on physical capacity, immunological cells and their function prior to surgery.
Primary endpoints: The study will have three separate primary outcomes. The first primary outcome will be changes in cellular respiration (VO2max at the Anaerobic Threshold) measured by the gold standard Cardio Pulmonary Exercise Testing (CPET). The second primary outcome is the preoperative change in the Neutrophil to Lymphocyte Ratio (NLR)30. The third outcome will be difference in up and downregulation of immune function at the invasive front of the tumor, measured by the Nanostring PanCancer Immune profiling panel.
Project description:Mouse Iron Distribution Dynamics
Dynamic model of iron distribution in mice. This model attempts to fit the radioiron tracer data from Lopes et al. 2010 for mice fed iron deficient and rich diets by adjusting the rate of iron intake (vDiet) and the hepcidin synthesis rate (vhepcidin) independently for each experiment. All other parameters are those that provide the best fit for the adequate diet.
This model includes the radioiron tracer species.
Differences in parameter values between deficient, rich, and adequate diets:
Diet
vDiet
vhepcidin
Adequate
0.00377422
1.7393e-08
Deficient
0
8.54927e-09
Rich
0.00415624
2.30942e-08
Project description:au15-05_fit - differential gene expression in a.tha. depending on mutation in fit - Transcriptomical changes in transgenic plants that carry a point mutation in FIT. - Differential gene expression in A. thaliana seedlings depending on the introduction of a point mutation in FIT (FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR) under iron deficient conditions.