Project description:Mouse bone marrow derived dendritic cells were generated by culturing bone marrow cells at a density of 0.5x10E6 cells/ml in RPMI-1640 supplemented with 5% FCS, 1% Pen/Strep, 5microM 2-mercaptoethanol, 20ng/ml GM-CSF. At day 7 dendritic cells were stimulated or not with 500 ng/ml LPS, and collected at day 10.
2x10E8 cells were used to prepare whole cell extracts and to perform PU.1 immunoprecipitaion with PU.1 antibody (T-21 Santa Cruz). IgG was used as control.
Project description:RATIONALE: Radiation therapy uses high-energy x-rays to damage cancer cells. Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. Combining chemotherapy with bone marrow transplantation may allow the doctor to give higher doses of chemotherapy drugs and kill more tumor cells.
PURPOSE: Phase II trial to study the effectiveness of bone marrow transplantation in treating patients who have hematologic cancer.
Project description:Hematopoietic stem cells give rise to all blood lineages, can fully re-populate the bone marrow, and easily outlive the host organism. To better understand how stem cells remain fit during aging, we analyzed the proteome of hematopoietic stem and progenitor cells.
Project description:Multiple myeloma is a fatal hematological malignancy. In order to develop effective therapeutic approaches, it is critical to understand the pathogenesis of myeloma. The Radl 5T model of multiple myeloma is a clinically relevant murine model where myeloma spontaneously occurs in aged, in-bred C57BlKalwRij mice and can be propagated by intravenous inoculation of 5T myeloma cells into mice of the same strain. Importantly inoculation of 5T myeloma cells into C57Bl6 mice does not result in myeloma, demonstrating that the bone marrow (BM) microenvironment of the C57BlKalwRij strain provides a unique and permissive milieu for myeloma development. We hypothesized that cells of the BM microenvironment may provide essential stimuli for the development of multiple myeloma in vivo. We aim to determine the differences in expression within the bone marrow of C57Bl/KalwRij mice. Comparison of C57Bl/KalwRij mouse bone marrow to C57BL6 mouse bone marrow