Project description:Chronic renal failure (CRF) is associated with a decrease in drug metabolism. The present study investigated the repercussions of CRF on liver cytochrome P450 (CYPs), but the mechanisms have been little explored. On the other hand, the expression of several CYP genes exhibits circadian rhythm. Here we report that downregulation of hepatic CYP3A11 (the murine homolog to human CYP3A4; the most decrease in 5/6Nx using microarray analysis) by suppressing the expression of clock gene; D-site binding protein (DBP). In vivo experiments, the mRNA levels of hepatic CYP3A11 exhibit circadian rhythm regulated by DBP and E4BP4, and significantly decreased in 5/6Nx. Microarray analysis revealed that the general transcription factors of CYP3A11 did not changed. However, DBP were downregulated and several CYP genes controlled by DBP also significantly decreased in 5/6Nx. These downregulations were not observed in angiotensin II type 1alpha receptor (AT II R1a) deficient 5/6Nx because serum TGF-betaM-BM- was not upregulate. In vitro experiments, the RNA levels of CYP3A11 and DBP were downregulated in wild-type mouse hepatocytes incubated with serum from 5/6Nx, but did not changed in Id2 (-/-) hepatocytes. In fact, hepatic Id2 was upregulated and caused the downregulation of DBP in 5/6Nx. Hepatocyte treated with SD208 (TGF-beta receptor 1 selectivity inhibitor) recovered CYP3A11, DBP and Id2 to control levels. Furthermore, 5/6Nx treated with tranilast (inhibitor of TGF-beta production or isolation) or candesartan (ARBs) also recovered CYP3A11 levels. Our findings define that DBP has effects on downregulation of CYP3A11. In CRF conditions, TGF-beta is upregulated by angiotensin II receptor in renal and downregulates DBP and CYP3A11 levels mediated by Id2 in liver. Furthermore, downregulation of CYP3A11 can prevent by tranilast or candesartan. Differential gene expression between 5/6 nephrectomized and sham-operated mouse was measured on the liver.
Project description:We obtained the profiles of neuronal phosphoproteome after cerebral ischemia and reperfusion by isolating mice hippocampus. Hippocampus combined from either nine sham or nine focal cerebral ischemia 1.5 h and reperfusion 24 h (IR) mice were lysed, digested, labeled with different TMT tags, then pooled and analyzed by LC/LC-MS/MS. In total, we quantified 7,865 phosphopeptides,179 phosphorylation sites of 129 proteins were upregulated and 843 phosphorylation sites of 494 proteins were downregulated in hippocampus during cerebral ischemia 2 h compare with sham operation.
Project description:We obtained the profiles of neuronal proteome after cerebral ischemia and reperfusion by isolating mice hippocampus. Hippocampus combined from either nine sham or nine focal cerebral ischemia 1.5 h and reperfusion 24 h (IR) mice were lysed, digested, labeled with different TMT tags, then pooled and analyzed by LC/LC-MS/MS. In total, we quantified 5,059 proteins. We identified 142 differentially expressed proteins (t-test, p-value<0.05) after IR compared to sham groups. The results showed that 92 proteins were upregulated, and 50 proteins were downregulated after IR compared to sham groups. Gene ontology (GO) enrichment analysis of differentially expressed proteins between sham and IR groups. The results showed that the biological process of most of upregulated genes linked with immune inflammatory related responses were increased. And KEGG pathway analysis for upregulated genes showed that multiple immune inflammatory response pathways also increased significantly, such as TNF-signaling, NF-κB signaling and cytokine-cytokine receptor interaction, as well as NOD-like receptor signaling, and toll-like receptor signaling.
Project description:We obtained the profiles of neuronal phosphoproteome after cerebral ischemia onset by isolating mice hippocampus. Hippocampus combined from either ten sham or ten focal cerebral ischemia 2 h mice were lysed, digested, labeled with different TMT tags, then pooled and analyzed by LC/LC-MS/MS. Five percent of the pool was used for whole proteome analysis, and the remaining 95% was subjected to phosphoproteome profiling. In total, we quantified 5,174 proteins and 9,062 phosphopeptides. Interesting, 21 proteins were upregulated and 7 proteins were downregulated in hippocampus lysates of cerebral ischemia 2 h relative to sham base on fold change. S100a9, Alpha-2-HS-glycoprotein (Ahsg), Fibrinogen beta chain (Fga) and Complement Component C3(c3) are the top significantly changed, which were highly consistent with previous reports in cerebral ischemia injury. Using wolfpsort software to analysis the Subcellular Location, 57% of detected proteins were location to extracellular, 15% were cytoplasmic protein, another 11% were transport to nucleus, and the others were location to plasma membranes (10%), mitochondria (4%) and endoplasmic reticulum (3%). Moreover,184 phosphorylation sites of 135 proteins were upregulated and 689 phosphorylation sites of 420 proteins were downregulated in hippocampus during cerebral ischemia 2 h compare with sham operation. Employing wolfpsort software analysis the subcellular location, 50% of phosphorylated proteins were location to nucleus, 26% were cytoplasmic protein, another 16% were transport to plasma membranes, and the others were location to mitochondria (4%), extracellular (3%) and cytoskeleton (1%). Motif analysis showed that 85% were belongs to serine-type phosphorylation, about 14 were threonine-type phosphorylation and 1% were tyrosine-type phosphorylation.
Project description:Chronic renal failure (CRF) is associated with a decrease in drug metabolism. The present study investigated the repercussions of CRF on liver cytochrome P450 (CYPs), but the mechanisms have been little explored. On the other hand, the expression of several CYP genes exhibits circadian rhythm. Here we report that downregulation of hepatic CYP3A11 (the murine homolog to human CYP3A4; the most decrease in 5/6Nx using microarray analysis) by suppressing the expression of clock gene; D-site binding protein (DBP). In vivo experiments, the mRNA levels of hepatic CYP3A11 exhibit circadian rhythm regulated by DBP and E4BP4, and significantly decreased in 5/6Nx. Microarray analysis revealed that the general transcription factors of CYP3A11 did not changed. However, DBP were downregulated and several CYP genes controlled by DBP also significantly decreased in 5/6Nx. These downregulations were not observed in angiotensin II type 1alpha receptor (AT II R1a) deficient 5/6Nx because serum TGF-beta was not upregulate. In vitro experiments, the RNA levels of CYP3A11 and DBP were downregulated in wild-type mouse hepatocytes incubated with serum from 5/6Nx, but did not changed in Id2 (-/-) hepatocytes. In fact, hepatic Id2 was upregulated and caused the downregulation of DBP in 5/6Nx. Hepatocyte treated with SD208 (TGF-beta receptor 1 selectivity inhibitor) recovered CYP3A11, DBP and Id2 to control levels. Furthermore, 5/6Nx treated with tranilast (inhibitor of TGF-beta production or isolation) or candesartan (ARBs) also recovered CYP3A11 levels. Our findings define that DBP has effects on downregulation of CYP3A11. In CRF conditions, TGF-beta is upregulated by angiotensin II receptor in renal and downregulates DBP and CYP3A11 levels mediated by Id2 in liver. Furthermore, downregulation of CYP3A11 can prevent by tranilast or candesartan.
Project description:After induction of ischemic chronic heart failure (CHF), mice exhibited depression-like behavior, in terms of increased anhedonia, and decreased both exploratory activity and interest in novelty. On histology, ischemic CHF mice showed no alterations in overall cerebral morphology. To further evaluate relevant behavioral changes found in CHF mice, RNA-sequencing analysis of prefrontal cortex and hippocampus - the brain regions, whose structural and functional alterations are associated with an increased risk for developing major depressive disorder - and of left myocardial tissue was performed in CHF vs. sham-operated animals. RNA-sequencing revealed relevant changes in hippocampal or prefrontal cortical expression of genes responsible for axonal vesicle transport (Kif5b), signal transduction (Arc, Gabrb2), limitation of inflammation (RORA; Nr4a1) and of hypoxic brain damage (Hif3a). Besides, the actual literature describes some of the genes (RORA, Gabrb2, Npas4, and Junb) being associated with depression-like behavior. Nr4a1 significantly regulated in both brain and heart tissue after induction of ischemic CHF could be a potential link and reveals the central role of inflammation in the interrelation of the brain and the failing heart. Heart failure vs. sham-operation were performed in C57BL/6 male mice. After development of chronic heart failure (CHF) 8 weeks after the operation RNA was extracted out of prefrontal cortex, hippocampus and left ventricular myocardium in both groups. RNA of 3 ischemic CHF mice versus 6 sham operated mice was pooled and further subjected to RNA sequencing. To fabricate singular pools each probe of the group equally contributed with the final amount of 2 µg RNA per pool with the result that we had 6 different pools to be further evaluated. The mRNA profile was generated by IGA Technology, Italy (http://www.igatechnology.com/) by deep sequencing, using Illumina HiSeq 2000 platform (HiSeq). CLC-Bio Genomics Workbench software (CLC Bio, Denmark) was used to calculate gene expression levels based on Mortazavi et al. (Nat Methods. 2008;5:621-628) approach.
Project description:The circadian clock has been found to be associated with various diseases. We showed that 5/6 nephrectomy (5/6Nx) Clk/Clk mice, which show mutation in the gene encoding circadian locomotor output cycles (Clock) do not show aggravation of renal fibrosis because transforming growth factor-1 (Tgf-1) expression is not increased. In wild-type 5/6Nx kidneys, we found that retinoid, a metabolite of retinol, led to alteration of the expresion 24-h rhythm of Clock expression. Renal Tgf- 1 expression is activated by Clock and further aggravates renal dysfunction by causing fibrosis. We also showed that, in 5/6Nx mice fed a retinol-free diet, renal fibrosis and apoptosis are reduced, leading to a marked improvement in serum creatinine levels. Moreover, our study identified hepatic Cyp3a11 and Cyp26a1 as key retinol metabolism-related genes whose expression decreased in 5/6Nx mice. Our data indicated that the negative chain reaction of metabolic clock alteration in between the kidney and liver aggravates renal dysfunction. Differential gene expression between retinol (-) feeding and clock mutant in 5/6 nephrectomized mouse was measured on the kidney at 8 weeks after operation. Four-week-old male ICR mice (Charles River Japan, Inc., Yokohama, Japan) were housed in a light-controlled room (lights on from Zeitgeber time [ZT] 0 to ZT12) at 24 ± 1°C and 60 ± 10% humidity, with food and water available ad libitum. Mice were synchronized to the lighting conditions for 2 weeks before surgery. Male ICR mice (5 weeks old) were purchased from Charles River Japan, Inc. (Kanagawa, Japan). Clock mutant mice (C57BL/6J-ClockmlJt/J) were purchased from The Jackson Laboratory (Bar Harbor, ME, USA). We placed them in the ICR genetic background to enhance breeding robustness and care of the young. These mice were backcrossed using a Jcl:ICR background for more than eight generations. We prepared mouse models of CRF by 5/6Nx operation (Ope) under sodium pentobarbital (40 mg/kg, i.p.) or diethyl ether anesthesia. 5/6Nx was performed in two stages. In the first surgical procedure (at 6 weeks of age), two-thirds of the left kidney was removed by cutting off both poles. Seven days later, the right kidney was completely removed. After the operation, mice were housed for 8 weeks (until they were 16 weeks old) in order to achieve CRF. Sham-operated (Sham) mice were subjected to laparotomy on the same days as the procedure in the 5/6Nx mice. This method was also used for treating Clk/Clk mice. Retinol-free food (A minus) was purchased form KBT ORIENTAL CO., LTD. To investigate the influences of retinol-free feeding on kidney, mice were fed from the fourth week to the eighth week after an operation.
Project description:After induction of ischemic chronic heart failure (CHF), mice exhibited depression-like behavior, in terms of increased anhedonia, and decreased both exploratory activity and interest in novelty. On histology, ischemic CHF mice showed no alterations in overall cerebral morphology. To further evaluate relevant behavioral changes found in CHF mice, RNA-sequencing analysis of prefrontal cortex and hippocampus - the brain regions, whose structural and functional alterations are associated with an increased risk for developing major depressive disorder - and of left myocardial tissue was performed in CHF vs. sham-operated animals. RNA-sequencing revealed relevant changes in hippocampal or prefrontal cortical expression of genes responsible for axonal vesicle transport (Kif5b), signal transduction (Arc, Gabrb2), limitation of inflammation (RORA; Nr4a1) and of hypoxic brain damage (Hif3a). Besides, the actual literature describes some of the genes (RORA, Gabrb2, Npas4, and Junb) being associated with depression-like behavior. Nr4a1 significantly regulated in both brain and heart tissue after induction of ischemic CHF could be a potential link and reveals the central role of inflammation in the interrelation of the brain and the failing heart.