Project description:The nitrogen rich compound guanidine occurs widely in nature and is used by microbes as a nitrogen source, but microorganisms that grow on guanidine have not yet been discovered. Here we show that complete ammonia-oxidizing microbes (comammox), but no other known nitrifiers, encode homologues of a guanidinase and that the comammox isolate Nitrospira inopinata grows on guanidine as sole source of energy and reductant. Proteomics, kinetic enzyme characterization, and the crystal structure of the N. inopinata guanidinase homologue demonstrated that it is a bona fide guanidinase. Transcription of comammox guanidinases was induced in wastewater treatment plant microbiomes upon incubation with guanidine, and guanidine degradation was detected in these systems. The discovery of guanidine as a selective growth substrate for comammox shows a unique niche of these globally important nitrifiers and offers new options for their isolation as well as for targeted manipulation of nitrifier communities.
2024-08-03 | PXD038826 | Pride
Project description:Spatial and temporal niche separation of Methanomassiliicoccales in temperate fens
Project description:Microorganisms are key contributors to biogeochemical flux in estuarine ecosystems. In this study, we conducted proteogenomic characterization of microbial communities from estuarine ecosystems.
Project description:In order to study the effect of Ncx1 deletion on the HSC-supportive microenviromrent in the AGM niche, caudal parts from E9.5 (20-23 sp) Ncx1-/- and Ncx1+/+ littermate controls (4 embryos/group) were dissected and processed into single cell suspensions and dead/damaged cells were removed by magnetic separation. Resulting cell suspension from Ncx1-/- and Ncx1+/+ embryos loaded onto independent channels of a Chromium chip before single cell partitioning and barcoding on Chromium Controller (10x Genomics).
Project description:To characterize the distinct features of HSPCs and relevant niche cells, we performed RNA-seq with sorted zebrafish HSPCs and niche cells, based on fluorescent protein labeling from distinct regions at six relatively discrete stages.
Project description:Although multiple studies have investigated the mesenchymal stem and progenitor cells (MSCs) that give rise to mature bone marrow, high heterogeneity in their morphologies and properties causes difficulties in molecular separation of their distinct populations. In this study, by taking advantage of the resolution of the single cell transcriptome, we analyzed Sca-1 and PDGFR-α fraction in the mouse bone marrow tissue. The single cell transcriptome enabled us to further classify the population into seven populations according to their gene expression profiles. We then separately obtained the seven populations based on candidate marker genes, and specified their gene expression properties and epigenetic landscape by ATAC-seq. Our findings will enable to elucidate the stem cell niche signal in the bone marrow microenvironment, reconstitute bone marrow in vitro, and shed light on the potentially important role of identified subpopulation in various clinical applications to the treatment of bone- and bone marrow-related diseases.
Project description:Specialized niche environments specify and maintain stem and progenitor cells, but little is known about the identities and functional interactions of niche components in vivo. Here, we describe a modular system for the generation of artificial hematopoietic niches in the mouse embryo. A circumscribed tissue that lacks niche function but is physiologically accessible for hematopoietic progenitor cells is functionalized by individual and combinatorial expression of four factors, the chemokines Ccl25 and Cxcl12, the cytokine Scf and the Notch ligand DLL4. The distinct phenotypes and variable numbers of hematopoietic cells in the resulting niches reveal synergistic, context-dependent and hierarchical interactions among niche effector molecules. The surprisingly simple rules determining niche outcomes enable the in vivo engineering of artificial niches conducive to the presence of distinct myeloid or T or B lymphoid lineage precursors. The dataset comprises 24 samples divided into eight sample groups each representing a different lymphoid progenitor cell type isolated from wild-type (+/-) or transgenic (-/-) thymic niches. -/-, Foxn1-deficient genotype; +/-, Foxn1 heterozygous phenotype; DP, CD4/CD8 double-poisztive thymocytes; DN3, CD4/CD8-negative stage 3 thymocytes; SP4, CD4 single-positive thymocytes; SP8, CD8 single-positive thymocytes; B IgM-, IgM surface negative B cells; B IgM+, IgM surface positive B cells; B IgM- -/-, IgM surface negative B cells from Foxn1-deficient genotype.
Project description:Mesenchymal stem cells (MSCs) And osteolineage cells contribute to the hematopoietic stem cell (HSC) Niche in the bone marrow of long bones. However, Their developmental relationships remain unclear. Here we demonstrate that different MSC populations in the developing marrow of long bones have distinct functions. Proliferative mesoderm-derived nestin- MSCs participate in fetal skeletogenesis, And lose MSC activity soon after birth. In contrast, Quiescent neural-crest-derived nestin+ Cells in the same bones preserve MSC activity, But do not generate fetal chondrocytes. Instead, They differentiate into HSC-niche-forming MSCs, Helping to establish the HSC niche by secreting Cxcl12. Perineural migration of these cells to the bone marrow requires the ErbB3 receptor. The neonatal Nestin-GFP+ PDGFR- Cell population also contains Schwann-cell precursors, But does not comprise mature Schwann cells. Thus, In the developing bone marrow HSC-niche-forming MSCs share a common origin with sympathetic peripheral neurons and glial cells, And ontogenically distinct MSCs have non-overlapping functions in endochondrogenesis and HSC niche formation. Total RNA was isolated from small numbers of FACS sorted stromal cells, obtained from neonatal Nes-Gfp bone marrow preparations (2 biological replicates). Each independent set of samples was obtained from pooled skeletal elements (long bones and sterna) form multiple littermates.