Project description:Microbial photoautotroph-heterotroph interactions underlie marine food webs and shape ecosystem diversity and structure in upper ocean environments. However, the high complexity of in situ ecosystems renders it difficult to study these interactions. Two-member co-culture systems of picocyanobacteria and single heterotrophic bacterial strains have been thoroughly investigated. However, in situ interactions comprise far more diverse heterotrophic bacterial associations with single photoautotrophic organisms. Here, bacterial community composition, lifestyle preference, and genomic- and proteomic-level metabolic characteristics were investigated for an open ocean Synechococcus ecotype and its associated heterotrophs over 91 days of co-cultivation. The associated heterotrophic bacterial assembly mostly constituted five classes including Flavobacteria, Bacteroidetes, Phycisphaerae, Gammaproteobacteria, and Alphaproteobacteria. The seven most abundant taxa/genera comprised >90% of the total heterotrophic bacterial community, and five of these displayed distinct lifestyle preferences (free-living or attached) and responses to Synechococcus growth phases. Six high-quality genomes from the co-culture system were reconstructed inclusive of Synechococcus and the five dominant heterotrophic bacterial populations. The only primary producer of the co-culture system, Synechococcus, displayed metabolic processes primarily involved in inorganic nutrient uptake, photosynthesis, and organic matter biosynthesis and release. Two of the flavobacterial populations, Muricauda and Winogradskyella, and an SM1A02 population, displayed preferences for initial degradation of complex compounds and biopolymers, as evinced by high abundances of TBDT, glycoside hydrolase, and peptidases proteins. In contrast, the alphaproteobacterium Oricola sp. population mainly utilized low molecular weight DOM, including Flavobacteria metabolism byproducts, through ABC, TRAP, and TTT transport systems. Polysaccharide-utilization loci present in the flavobacterial genomes encoded similar trans-membrane protein complexes as Sus/cellulosome and may influence their lifestyle preferences and close associations with phytoplankton. The heterotrophic bacterial populations exhibited complementary mechanisms for degrading Synechococcus-derived organic matter and driving nutrient cycling. In addition to nutrient exchange, removal of reactive oxygen species and vitamin trafficking also contributed to the maintenance of the Synechococcus / heterotroph co-culture system and the interactions shaping the system.
2020-05-27 | PXD015067 | Pride
Project description:Recovery of high-quality assembled genomes via single-cell genome-guided binning of metagenome assembly
| PRJNA692334 | ENA
Project description:MAGs obtained from metagenomic binning
Project description:We examine the use of high-throughput sequencing on binding sites recovered using a bacterial one-hybrid (B1H) system and find that improved models of transcription factor (TF) binding specificity can be obtained compared to standard methods of sequencing a small subset of the selected clones. We can obtain even more accurate binding models using a modified version of B1H selection method with constrained variation (CV-B1H). However, achieving these improved models using CV-B1H data required the development of a new method of analysis - GRaMS (Growth Rate Modeling of Specificity) - that estimates bacterial growth rates as a function of the quality of the recognition sequence. We benchmark these different methods of motif discovery using Zif268, a well characterized C2H2 zinc finger transcription factor on both a 28bp randomized library for the standard B1H method and on 6bp randomized library for the CV-B1H method for which forty-five different experimental conditions were tested: 5 time points and three different IPTG and 3-AT concentrations. We find that GRaMS analysis is robust to the different experimental parameters whereas other analysis methods give widely varying results depending on the conditions of the experiment. Finally, we demonstrate that the CV-B1H assay can be performed in liquid media, which produces recognition models that are similar in quality to sequences recovered from selection on solid media.
Project description:We developed miniBac-seq, a strand-specific method for high-quality bacterial RNA-seq library construction from sub-nanogram of total RNA, equivalent to a few thousand bacterial cells; we also tested its potent to be adopted as a single cell RNA-seq method. Here we provide the supporting data to the paper introducing this technology.
Project description:We developed miniBac-seq, a strand-specific method for high-quality bacterial RNA-seq library construction from sub-nanogram of total RNA, equivalent to a few thousand bacterial cells; we also tested its potent to be adopted as a single cell RNA-seq method. Here we provide the supporting data to the paper introducing this technology.
Project description:Long-term culture associated changes need to be considered for quality control of cell preparations – especially in cellular therapy. Here we describe a simple method to track cellular aging based on continuous DNA-methylation changes at six specific CpG sites. This epigenetic signature can be used as a biomarker for various cell types to predict the state of cellular aging with regard to the number of passages or days of in vitro culture.