Project description:To determine the influence of primary tumors on pre-metastatic lymph nodes, we have employed whole genome microarray expression profiling as a discovery platform to identify gene signatures of B cells from tumor-draining lymph nodes, compared with normal lymph nodes. We subcutaneously inoculated C57BL/6 mice with the 4T1 mammary carcinoma. Two weeks later, tumor-draining lymph nodes were dissociated and B cells (CD19+) were sorted. Lymph nodes B cells from normal mice without tumor bearing were set as controls.
Project description:To determine the influence of primary tumors on pre-metastatic lymph nodes, we have employed whole genome microarray expression profiling as a discovery platform to identify gene signatures of stromal cells from tumor-draining lymph nodes, compared with normal lymph nodes. We subcutaneously inoculated C57BL/6 mice with the 4T1 mammary carcinoma. Two weeks later, tumor-draining lymph nodes were dissociated and stromal cells (CD45-) were sorted. Lymph nodes stromal cells from normal mice without tumor bearing were set as controls.
Project description:Topical (epicutaneous, e.c.) application of the adjuvant CpG ODN during immunization leads to a robust immune response compared to when subcutaneous (s.c.) administration. Dendritic cells are hematopoietically derived cells that are important in cross-presenting to and activating CD8 T cells. Dermal dendritic cells are one of the two major dendritic cell subsets found in the skin which mobilize from the skin to draining lymph nodes to present to T cells upon activation. Dermal dendritic cells are found in skin draining lymph nodes around 24 hours post immunization. To determine how the immune system respond differently between e.c. versus s.c. administration of CpG ODN, we evaluated changes in the skin draining lymph node environment upon the two routes of adjuvant application. Expression chemokines and chemokine receptors were assessed with real-time qPCR. To determine the changes in the skin draining lymph node environment (cytokine and cytokine receptor levels) upon immunization via real time RT-PCR.
Project description:Metastasis to lymph nodes is an early and prognostically important event in the progression of many human cancers, and is associated with expression of vascular endothelial growth factor-D (VEGF-D). Changes to lymph node vasculature occur during metastasis, and may establish a metastatic niche capable of attracting and supporting tumor cells. We used microarrays to characterise the molecular profiles of endothelial cells from lymph nodes draining metastatic (VEGF-D-overexpressing) and non-metastatic tumors, and to identify differentially-expressed genes that might have therapeutic or prognostic potential. Draining lymph nodes of metastatic (VEGF-D-overexpressing) or non-metastatic tumors were pooled from 1-5 mice and enzymatically digested. Lymph nodes draining metastatic tumors were included for the analysis only if macroscopically enlarged, indicating the presence of metastatic cells. After digestion, tumor cells and leukocytes were depleted via immunomagnetic selection, and the resulting lymph node stromal cells were cultured briefly. Podoplanin was then used as a positive immunomagnetic selection marker to enrich for lymphatic and other endothelial cells in the lymph node. RNA was isolated from biological duplicate lymph node endothelial cell (LN EC) preparations and analysed by microarray.
Project description:Here we show the transcriptome of lymph nodes draining from RABV vaccinated B6 mice and TLR7 KO mice. These differential transcripts will provide a reference for studies focus on the relationship between TLR7-denpendent signaling and humoral immunity.
Project description:Metastasis to lymph nodes is an early and prognostically important event in the progression of many human cancers, and is associated with expression of vascular endothelial growth factor-D (VEGF-D). Changes to lymph node vasculature occur during metastasis, and may establish a metastatic niche capable of attracting and supporting tumor cells. We used microarrays to characterise the molecular profiles of endothelial cells from lymph nodes draining metastatic (VEGF-D-overexpressing) and non-metastatic tumors, and to identify differentially-expressed genes that might have therapeutic or prognostic potential.