Project description:Multi-omics analysis of the symbiotic green algae, Chlorella variabilis, revealing the genetic basis of the obligate endosymbiotic lifestyle
Project description:The PBCV-1/Chlorella variabilis NC64A system is a model for studies on interactions between viruses and algae. Here we present the first global analyses of algal host transcripts during the early stages of infection, prior to virus replication. During the course of the experiment stretching over 1 hour, about a third of the host genes displayed significant changes in normalized mRNA abundance that either increased or decreased compared to uninfected levels. The population of genes with significant transcriptional changes gradually increased until stabilizing at 40 minutes post infection. Functional categories including cytoplasmic ribosomal proteins, jasmonic acid biosynthesis and anaphase promoting complex/cyclosomes had a significant excess in upregulated genes, whereas spliceosomal snRNP complexes and the shikimate pathway had significantly more down-regulated genes, suggesting that these pathways were activated or shut-down in response to the virus infection. Lastly, we examined the expression of C. varibilis RNA polymerase subunits, as PBCV-1 transcription depends on host RNA polymerases. Two subunits were up-regulated, RPB10 and RPC34, suggesting that they may function to support virus transcription. These results highlight genes and pathways, as well as overall trends, for further refinement of our understanding of the changes that take place during the early stages of viral infection.
Project description:To assess the significant downstream pathways affected by the overexpression of LONELY GUY in Chlorella, transcriptome analysis was carried out using RNA sequencing of three biological replicates each from WT and LOG OX1 at 14 dpi (1h before dark phase). The 14 dpi was chosen for the analysis because it was in the middle of the growth phase, where the slower growth of LOG OX1 was evident.
Project description:With growing industrial interest in algae plus their critical roles in aquatic systems, the need to understand the effects of algal pathogens is increasing. We examined a model algal host-virus system, Chlorella variabilis NC64A and virus, PBCV-1. C. variabilis encodes 375 homologs to genes involved in RNA silencing and in response to virus infection in higher plants. Illumina RNA-Seq data showed that 325 of these homologs were expressed in healthy and early PBCV-1 infected (?60min) cells. For each of the RNA silencing genes to which homologs were found, mRNA transcripts were detected in healthy and infected cells. C. variabilis, like higher plants, may employ certain RNA silencing pathways to defend itself against virus infection. To our knowledge this is the first examination of RNA silencing genes in algae beyond core proteins, and the first analysis of their transcription during virus infection.