Project description:The efficacy of monoclonal antibodies against either interleukin (IL)-17 or the IL-17 receptor in psoriasis therapy provides strong evidence that IL-17 is the major inflammatory mediation in this disease. However, how IL-17 induces epidermal hyperplasia in psoriasis remains largely unknown. Here, we show that IL-17 actives NF-kB in keratinocytes and initiates the NF-kB-dependent transcription of microRNA-31 (miR-31), one of the most abundant microRNAs in the epidermis of lesional skin of psoriasis and two related mouse models. Similar to IL-17 deficiency (IL-17-/-), knocking out miR-31 (miR-31-/-) or targeting it by antagomir-31 prevents keratinocytes Ki67 expression and inhibits acanthosis and dermal inflammation in psoriasis mouse model. Moreover, PPP6c, a negative regulator restricting G0/G1 to G2/M phase progression in the cell cycle, is diminished in human psoriatic epidermis and is directly targeted by miR-31. Inhibition of ppp6c is functionally important for the biological effects of miR-31 in the development of epidermal hyperplasia. Thus, our data define IL-17-inducede miR-31 and its target ppp6c as critical factors for hyperproliferative epidermis in psoriasis. Epidermis samples from affected ears derived from 3 CD18hypo PL/J mice (DIS) or normal ears derived from 3 CD18hypo C57BL/6J mice(2128) were used for RNA extraction and hybridization on Affymetrix microarrays. We sought to compare miRNA expression of normal skin from control and lesional skin.
Project description:miRNA profiling has been performed on normal mature B cells at different stages of differentiation (naive, germinal center and memory). The main goal is to identify miRNA signatures associated with differentiation stages of normal B cells. Keywords: miRNA, normal mature B cells
Project description:mRNA and miRNA transcription changes during epidermal differentiation and between lesional psoriatic skin and normal skin were analysed
Project description:mRNA and miRNA transcription changes during epidermal differentiation and between lesional psoriatic skin and normal skin were analyzed
Project description:We report the application of Illumina small RNA sequencing to normal human skin, as well as uninvolved and involved psoriatic skin. By obtaining over 600 million qualified reads from 20 healthy controls and 47 psoriasis biopsies (uninvolved/involved), we have generated a complete small RNA profile in normal and diseased human skin, with particular emphasis on miRNAs. We report the discovery of 284 putative novel miRNAs as well as 98 differentially expressed miRNAs in psoriatic skin. miRNA discovery and expression profiling in 67 normal and psoriatic human skin biopsies
Project description:Purpose: to explore the function and mechanism of skin damage induced by ultraviolet irradiation. The mouse model of UVB irradiation was established. Using miRNA Sequence analysis, the miRNA expression profile of the mouse skin model exposed to UVB radiation and the normal skin mice. GO and Pathway analysis were employed for the prediction of miRNA targets. Results:Compared with normal skin, a total of 23 miRNAs were screened for significantly different expressions. Among them, 7 miRNAs were up-regulated and 16 were down-regulated in the skin wound tissue of mice exposed to UVB irradiation. The differential expression of miRNA is related to a variety of signal transduction pathways, among which mmu-miR-195a-5p and mitogen-activated protein kinase (MAPK) signal pathway is worthy of attention. Conclusion: There was significant difference expression of miRNA in the skin tissue of normal mice and the skin injury induced by UVB irradiation. Differential expression of miRNA can be used in the diagnosis and treatment of UVB-induced acute skin injury.