Project description:To explore how multiple drug-resistant A. baumannii response to colistin resistance, we compared the genomic, transcriptional and proteomic profile of A. baumannii MDR-ZJ06 to that of induced colistin resistant strain ZJ06-200P5-1.
Project description:RNA sequencing was carried out by ARK genomics, Edinburgh on an Illumina HiSeq platform to compare gene expression in Acinetobacter baumannii strain AYE and an adeRS deletion mutant in this strain.
Project description:RNA sequencing was carried out at BGI, Hong Kong on an Illumina HiSeq platform to compare gene expression in Acinetobacter baumannii strain S1 and an adeAB deletion mutant in this strain.
Project description:RNA sequencing was carried out at the University of Birmingham on an Illumina MiSeq platform to compare gene expression in Acinetobacter baumannii strain AYE and an adeB deletion mutant in this strain.
Project description:In this study the transcriptomes of Acinetobacter baumannii strains ATCC 17978 and 17978hm were compared. Strain 17978hm is a hns knockout derivative of strain ATCC 17978. Strain 17978hm displays a hyper-motile phenotype on semi-solid Mueller-Hinton (MH) media (0.25% agar). ATCC 17978 and 17978hm from an 37C overnight culture were transferred to the centre of the semi-solid MH plate and incubated at 37C for 8 hours. Only 17978hm cells displayed a motile phenotype and covered the complete surface of the plate. These motile 17978hm cells and the non-motile wild-type ATCC 17978 cells were harvested and RNA was isolated. The comparative transcriptome analysis was performed using the FairPlay labeling kit and a custom made Agilent MicroArray with probes designed to coding regions of the ATCC 17978 genome. The data was analyzed using Agilent GeneSpring GX9 and the significance analysis of microarray MS Excel add-on.
Project description:Acinetobacter baumannii AB042, a triclosan-resistant mutant, was examined for modulated gene expression using whole genome sequencing, transcriptomics, and proteomics in order to understand the mechanism of triclosan-resistance as well as its impact on A. Baumannii.