Project description:We used microarrays to detail the global programme of gene expression in 3T3-L1 preadipocytes and identified regulated genes upon knockdown of lncRNA slincRAD.
Project description:Trans-10, Cis-12 conjugated linoleic acid (t10c12 CLA) causes fat loss in mouse white adipose tissue (WAT) and 3T3-L1 adipocyte tissue culture; however in preadipocyte tissue (this series) the UPS/ISR and fat loss is not detected. The early transcriptome changes in 3T3-L1 preadipocyte tissue culture were analyzed using high-density microarrays to better characterize the signaling pathways responding to t10c12 CLA. Their gene expression responses between 4 to 12 hr after treatment do not show a set of genes indicative of an integrated stress response (ISR). Experiment Overall Design: Mouse 3T3-L1 RNA for each time point was isolated from two control (LA) and two treatment (CLA) samples for analysis on four microarrays.
Project description:Trans-10, Cis-12 conjugated linoleic acid (t10c12 CLA) causes fat loss in mouse white adipose tissue (WAT) and 3T3-L1 adipocyte tissue culture; however in preadipocyte tissue (this series) the UPS/ISR and fat loss is not detected. The early transcriptome changes in 3T3-L1 preadipocyte tissue culture were analyzed using high-density microarrays to better characterize the signaling pathways responding to t10c12 CLA. Their gene expression responses between 4 to 12 hr after treatment do not show a set of genes indicative of an integrated stress response (ISR). Keywords: control/treatment time course
Project description:3T3-L1 fibroblasts are a commonly used in vitro model for adipogenesis. When induced with hormones, they differentiate into mature fat cells. Here, microarrays were used to study 3T3-L1 adipose differentiation through time. Keywords: time course
Project description:Transcriptional profiling of mouse 3T3-L1 adipocytes. The objective of this study is to explore gene expression profiles of 3T3-L1 adipocytes in response to GDE5 siRNA transfection.
Project description:Differentiation of 3T3-L1 cells into adipocytes involves a highly orchestrated series of events including clonal expansion, growth arrest and terminal differentiation. The mechanisms coordinating these different steps are not yet fully understood. Here we investigated whether micro (mi)RNAs play a role in this process. Microarray analysis was performed to detect miRNA expression during 3T3-L1 preadipocyte differentiation. Several miRNAs, including let-7, were up-regulated during 3T3-L1 adipogenesis. Ectopic introduction of let-7 into 3T3-L1 cells inhibited clonal expansion as well as terminal differentiation. The mRNA encoding high mobility group AT-hook 2 (HMGA2), a transcription factor that regulates growth and proliferation in other contexts, was inversely correlated with let-7 levels during 3T3-L1 cell adipogenesis, and let-7 markedly reduced HMGA2 concentrations. Knockdown of HMGA2 inhibited 3T3-L1 differentiation. These results suggest that let-7 plays an important role in adipocyte differentiation and that it does so in part by targeting HMGA2, thereby regulating the transition from clonal expansion to terminal differentiation.
Project description:Differentiation of 3T3-L1 cells into adipocytes involves a highly orchestrated series of events including clonal expansion, growth arrest and terminal differentiation. The mechanisms coordinating these different steps are not yet fully understood. Here we investigated whether micro (mi)RNAs play a role in this process. Microarray analysis was performed to detect miRNA expression during 3T3-L1 preadipocyte differentiation. Several miRNAs, including let-7, were up-regulated during 3T3-L1 adipogenesis. Ectopic introduction of let-7 into 3T3-L1 cells inhibited clonal expansion as well as terminal differentiation. The mRNA encoding high mobility group AT-hook 2 (HMGA2), a transcription factor that regulates growth and proliferation in other contexts, was inversely correlated with let-7 levels during 3T3-L1 cell adipogenesis, and let-7 markedly reduced HMGA2 concentrations. Knockdown of HMGA2 inhibited 3T3-L1 differentiation. These results suggest that let-7 plays an important role in adipocyte differentiation and that it does so in part by targeting HMGA2, thereby regulating the transition from clonal expansion to terminal differentiation. 3T3-L1 cells were induced to differentiation into mature adipocytes using a canonical DMI cocktail. The time point at two days after confluency of 3T3-L1 was defined as day 0. Samples were collected at day 0, day 1, day 4, and day 7. The expression of microRNAs at day 1, day 4, and day 7 was compared to that of day 0.
Project description:Target genes of Fbxl10 during 3T3-L1 adipogenesis was analyzed 3T3-L1 cells overexpressing Fbxl10 using retrovirus system containing LTR promoter were differentiated and RNA was extracted at day 2 of differentiation
Project description:In order to evaluate the impact of PCYOX1 deletion on adipogenesis, we applied a label-free mass spectrometry-based proteomic approach to compare the proteome of 3T3-L1 differentiated for 9 days to adipocytes after PCYOX1 gene silencing. Pcyox1 was silenced using shRNA lentiviral particles. Control cells were treated with shRNA lentiviral particles containing a negative construct.