Project description:Enterobacter sp. Z1 showed resistance to antimony and strong ability to produce antimony trioxide (Sb2O3) minerals. Thus, so the purpose of this project is to clarify mechanism of the biomineralization in strain Z1.
Project description:Global warming and heat stress belong to the most critical environmental challenges to agriculture worldwide, causing severe losses of major crop yields. In present study we report that the endophytic bacterium Enterobacter sp. SA187 protects Arabidopsis thaliana to heat stress. To understand the mechanisms at molecular level we performed RNA-seq
Project description:Global warming has become a critical challenge to food safety, causing severe yield losses of major crops worldwide. Here, we report that the endophytic bacterium Enterobacter sp. SA187 induces thermotolerance of crops in a sustainable manner. Microbiome diversity of wheat plants is positively influenced by SA187 in open field agriculture, indicating that beneficial microbes can be a powerful tool to enhance agriculture in open field agriculture.
Project description:Enterobacter sp. Z1 showed resistance to arsenic and selenium. We found that strain Z1 showed increased selenium reduction when we added arsenite, so the purpose of this project is to clarify how arsenite effects the selenium reduction of strain Z1.