Project description:While skin and oral mucosa share many morphological similarities, oral mucosal wounds heal more rapidly than skin wounds. Epithelial cells from oral mucosa exhibit increased migratory and proliferative capacities when compared to cells from skin, suggesting that the improved repair of mucosa may involve intrinsic differences in epithelial cells. This is an exploratory experiment to define the differential microRNA expression of baseline unwounded skin and oral mucosa epithelium.
Project description:Wound healing within the oral mucosa results in minimal scar formation compared to wounds within the skin. We have recently demonstrated distinct differences in the ageing profiles of cells (oral mucosal and patient-matched skin fibroblasts) isolated from these tissues. We hypothesize that the increased replicative potential of oral mucosal fibroblasts may confer upon them preferential wound healing capacities. Passage-matched early cultures of oral mucosal fibroblasts and skin fibroblasts demonstrated distinct gene expression profiles with a number of genes linked to wound healing/tissue repair. We analyzed the gene expression profiles of oral mucosal and patient-matched skin fibroblasts for multiple patients both prior to (0h) and (6h) following a wounding stimulus. Differences in the gene expression profiles of oral mucosal and patient-matched skin fibroblasts were anlazyed for multiple patients both prior to (0h) and (6h) following a wounding stimulus. Serum starvation and subsequent stimulation provides a model for wounding and RNA extracted at 0h and 6h following this stimulus was hybridized to Affymetrix microarrays for analysis. We sought to compare the expression profiles both between oral and normal fibroblasts, in both serum depleted and stimulated conditions and also compare differences between patients.
Project description:Wound healing within the oral mucosa results in minimal scar formation compared to wounds within the skin. We have recently demonstrated distinct differences in the ageing profiles of cells (oral mucosal and patient-matched skin fibroblasts) isolated from these tissues. We hypothesize that the increased replicative potential of oral mucosal fibroblasts may confer upon them preferential wound healing capacities. Passage-matched early cultures of oral mucosal fibroblasts and skin fibroblasts demonstrated distinct gene expression profiles with a number of genes linked to wound healing/tissue repair. We analyzed the gene expression profiles of oral mucosal and patient-matched skin fibroblasts for multiple patients both prior to (0h) and (6h) following a wounding stimulus.
Project description:The morphology and the behavior of skin and oral tissue keratinocytes are different. One significant dissimilarity between the two sites is the response to injury. Oral and skin keratinocytes have intrinsic differences in the response to injury and such differences are reflected in gene expression profiles. We used microarrays to investigate differences in global gene expression patterns between baseline skin and oral epithelium sheets without their underlying connective tissue. Paired skin and oral epithelium was separated from the dermis for RNA extraction and hybridization on Affymetrix microarrays. Skin epidermal tissues were obtained from the tail of mice and oral epidermal tissues were obtained from the hard palate. Enzymatically isolated epithelium was used for analysis.
Project description:Langerhans cells (LCs) populate the mucosal epithelium, a major entry portal for pathogens, yet their ontogeny remains unclear. In contrast to skin LCs originating from self-renewing radioresistant embryonic precursors, we found that oral mucosal LCs derive from circulating radiosensitive precursors. Mucosal LCs can be segregated into CD103+CD11blow (CD103+LCs) and CD11b+CD103- (CD11b+LCs) subsets. We further demonstrated that similar to non-lymphoid dendritic cells (DCs), CD103+LCs originate from pre-DCs, whereas CD11b+LCs differentiate from both pre-DCs and monocytic precursors. Despite this ontogenetic discrepancy between skin and mucosal LCs, transcriptomic signature and immunological function of oral LCs highly resemble those of skin LCs but not DCs. These findings, along with their epithelial position, morphology and expression of LC-associated phenotype strongly suggest that oral mucosal LCs are genuine LCs. Collectively, in a tissue-dependent manner, murine LCs differentiate from at least three distinct precursors (embryonic, pre-DCs and monocytic) in steady state The following cells were isolated from mice (2-4 replicates): Lung DCs, mucosal CD103+ LC, mucosal CD11b+ LC, Skin LC. Transcriptome analysis was performed.
Project description:The morphology and the behavior of skin and oral tissue keratinocytes are different. One significant dissimilarity between the two sites is the response to injury. Oral and skin keratinocytes have intrinsic differences in the response to injury and such differences are reflected in gene expression profiles. We used microarrays to investigate differences in global gene expression patterns between baseline skin and oral epithelium sheets without their underlying connective tissue.
Project description:When compared to skin, oral mucosal wounds heal rapidly and with reduced scar formation. This study used an Affymetrix microarray platform to compare the transcriptomes of oral mucosa and skin wounds in order to identify critical differences in the healing response at these two sites. Using microarrays, we explored the differences in gene expression in skin and oral mucosal wound healing in a murine model of paired equivalent-sized wounds. Samples were examined from day 0 to day 10 and spanned all stages of the wound healing process. Unwounded matched tissue was used as a control. Tissue samples collected at each post-wounding time point, as well as control samples, were represented by 3 biological replicates.
Project description:When compared to skin, oral mucosal wounds heal rapidly and with reduced scar formation. This study used an Affymetrix microarray platform to compare the transcriptomes of oral mucosa and skin wounds in order to identify critical differences in the healing response at these two sites.
Project description:Langerhans cells (LCs) populate the mucosal epithelium, a major entry portal for pathogens, yet their ontogeny remains unclear. In contrast to skin LCs originating from self-renewing radioresistant embryonic precursors, we found that oral mucosal LCs derive from circulating radiosensitive precursors. Mucosal LCs can be segregated into CD103+CD11blow (CD103+LCs) and CD11b+CD103- (CD11b+LCs) subsets. We further demonstrated that similar to non-lymphoid dendritic cells (DCs), CD103+LCs originate from pre-DCs, whereas CD11b+LCs differentiate from both pre-DCs and monocytic precursors. Despite this ontogenetic discrepancy between skin and mucosal LCs, transcriptomic signature and immunological function of oral LCs highly resemble those of skin LCs but not DCs. These findings, along with their epithelial position, morphology and expression of LC-associated phenotype strongly suggest that oral mucosal LCs are genuine LCs. Collectively, in a tissue-dependent manner, murine LCs differentiate from at least three distinct precursors (embryonic, pre-DCs and monocytic) in steady state