Project description:We herein report a case of presumed septic shock due to Actinotignum schaalii bacteremia with urinary tract infection. A 65-year-old Japanese man suffering from a fever was diagnosed with septic shock due to urinary tract infection. A urine sample was additionally incubated under 5% CO2 and anaerobic conditions after A. schaalii was identified in a blood culture, but A. schaalii was not detected in the urine culture. If Gram-positive rods are observed on Gram staining of a urine sample in symptomatic patients with a predisposing urogenital condition, 5% CO2 and an anaerobic culture of a urine sample should be performed immediately.
Project description:E. coli which cause urinary tract infections must respond to high osmolarity in the urinary tract as well as the presence of urea. We used microarrays to measure the differntial gene expression of uropathogenic strain CFT073 in conditions of high osmolarity of urea v. minimal media
Project description:E. coli which cause urinary tract infections must respond to high osmolarity in the urinary tract as well as the presence of urea. We used microarrays to measure the differntial gene expression of uropathogenic strain CFT073 in conditions of high osmolarity of urea v. minimal media RNA was extracted from CFT073 in each growth condition and hybridized to an Affymetrix microarray. The differentially expressed genes were analyzed by expression pattern and function.
Project description:Urinary tract infections (UTIs) are the second most common infections encountered in the pediatric population, second only to respiratory tract infections. UTIs are also a major cause of morbidity and mortality. UTIs can often ascend causing infection in the upper urinary tract or even progress to bacteremia or urosepsis. Urosepsis accounts for 10-30% of septic shock cases and Uropathogenic E.coli (UPEC) is responsible for almost 75% of cases. Therefore, increased understanding of the effects of urosepsis at the cellular and organ specific level will provide the foundation for improvements in clinical care.
Project description:Proteus mirabilis is a leading cause of catheter-associated urinary tract infections (UTIs) and urolithiasis. The transcriptional regulator MrpJ inversely modulates two critical aspects of P. mirabilis UTI progression: fimbria-mediated attachment to the urinary tract, and flagella-mediated motility. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) was used for the first time in a CAUTI pathogen to probe for in vivo direct targets of MrpJ. ChIP-seq revealed 81 78 direct MrpJ targets, including genes for motility, fimbriae and a type VI secretion system (T6SS), and the putative MrpJ binding sequence ACnCnnnnnnnGnGT.
Project description:Proteus mirabilis is a primary cause of complicated urinary tract infections (UTI). Surprisingly, iron acquisition systems have been poorly characterized in this uropathogen despite the urinary tract being iron-limited. In this report the transcriptome of strain HI4320, cultured under iron limitation, was examined using microarray analysis. Of genes upregulated at least 2-fold, 45 were statistically significant and comprise 21 putative iron-regulated systems. Two of these systems, PMI0229-0239 and PMI2596-2605, are organized in operons and appear to encode siderophore biosynthesis genes.