Project description:Chronic acid suppression by proton pump inhibitor (PPI) has been hypothesized to alter the gut microbiota via a change in intestinal pH. To evaluate the changes in gut microbiota composition by long-term PPI treatment. Twenty-four week old F344 rats were fed with (n = 5) or without (n = 6) lansoprazole (PPI) for 50 weeks. Then, profiles of luminal microbiota in the terminal ileum were analyzed. Pyrosequencing for 16S rRNA gene was performed by genome sequencer FLX (454 Life Sciences/Roche) and analyzed by metagenomic bioinformatics.
Project description:Interventions: Case (colorectal cancer) group:a newly diagnosed colorectal cancer( CRC ) by colonoscopy and pathology;Control group:Clinically healthy volunteers with no symptoms or history of intestinal disease(e.g. colonic adenomatous polyps, CRC or inflammatory bowel disease)
Primary outcome(s): composition of gut microbiota;intestinal microbial phytase activity;16s rRNA metagenomic sequencing;diet surveys;phytic acid intake
Study Design: Case-Control study
Project description:In this study we developed metaproteomics based methods for quantifying taxonomic composition of microbiomes (microbial communities). We also compared metaproteomics based quantification to other quantification methods, namely metagenomics and 16S rRNA gene amplicon sequencing. The metagenomic and 16S rRNA data can be found in the European Nucleotide Archive (Study number: PRJEB19901). For the method development and comparison of the methods we analyzed three types of mock communities with all three methods. The communities contain between 28 to 32 species and strains of bacteria, archaea, eukaryotes and bacteriophage. For each community type 4 biological replicate communities were generated. All four replicates were analyzed by 16S rRNA sequencing and metaproteomics. Three replicates of each community type were analyzed with metagenomics. The "C" type communities have same cell/phage particle number for all community members (C1 to C4). The "P" type communities have the same protein content for all community members (P1 to P4). The "U" (UNEVEN) type communities cover a large range of protein amounts and cell numbers (U1 to U4). We also generated proteomic data for four pure cultures to test the specificity of the protein inference method. This data is also included in this submission.