Project description:The aim of the experiments was to determine the regulon of the Bacillus subtilis alternative sigma factor SigI. Biological relevance: To expand our knowledge about Bacillus subtilis transcriptional network under unfavorable conditions. Experimental workflow overview: Bacillus subtilis 168 trp+ (BaSysBio) was used as the genetic background. (i) sigI-rsgI knock-out, (ii) rsgI knock-out, and (iii) wr strains were cultured in LB medium to mid-exponential phase at 37°C and 52°C. Total RNA was isolated from 3 ml of the culture. rRNA was depleted from the samples with RiboMinus; subsequently RNA-seq libraries were prepared (Illumina compatible NEXTflex Rapid Directional RNA-Seq Kit, Bioo Scientific) and sequenced at the EMBL GeneCore facility. The experiment was performed in three independent replicates.
Project description:The aim of this study was to explore whether, and if so, how Bacillus subtilis KC1 can enhance the growth performance of broilers that have been adversely affected by Mycoplasma gallisepticum (MG) infection. A total of 96 1-day-old male broilers were randomly divided into 4 groups: the control group (basal diet), the MG group (basal diet + MG challenge), the Bacillus subtilis KC1 group (basal diet + Bacillus subtilis KC1 supplementation), the Bacillus subtilis KC1 + MG group (basal diet + Bacillus subtilis KC1 supplementation + MG challenge). The trial lasted 42 days, and the results showed that the MG group had significantly reduced body weight and average daily gain, as well as increased feed conversion ratio of broilers, compared to the control group. Dietary supplementation with Bacillus subtilis KC1 significantly improved the growth performance of MG-infected broilers. In addition, dietary supplementation with Bacillus subtilis KC1 significantly improved oxidative stress and inflammatory response markers, characterized by increased superoxide dismutase levels and reduced levels of malondialdehyde, interleukin-1β, and tumor necrosis factor-α. Furthermore, both metabolomics and transcriptomics analyses indicated that MG infection markedly disrupted amino acid metabolism in broilers, whereas Bacillus subtilis KC1 supplementation alleviated the abnormal amino acid metabolism caused by MG infection. These results suggested that Bacillus subtilis KC1 may alleviate the poor growth performance caused by MG infection in broilers by improving amino acid metabolism.
Project description:The gene expression of Bacillus subtilis 168 showed 3 major patterns including early expression, transition expression and late expression We monitored Bacillus subtilis gene expression by using microarray at differernt time points
Project description:The transcriptome profiles of a riboflavin-producing recombinant Bacillus subtilis RH33 and wild type Bacillus subtilis 168 were compared using DNA microarrays to identify the target genes for further enhancing riboflavin production.
Project description:Investigation of the kinetics of whole genome gene expression level changes in Bacillus subtilis NDmed strain during formation of submerged biofilm and pellicle. The Bacillus subtilis NDmed strain analyzed in this study is able to form thick and highly structured submerged biofilms as described in Bridier et al., (2011) The Spatial Architecture of Bacillus subtilis Biofilms Deciphered Using a Surface-Associated Model and In Situ Imaging. PLoS ONE 6(1):e16177.
Project description:The transcriptome profiles of a riboflavin-producing recombinant Bacillus subtilis RH33 and wild type Bacillus subtilis 168 were compared using DNA microarrays to identify the target genes for further enhancing riboflavin production. Transcriptome profiles of a riboflavin-producing B. subtilis RH33 were compared with those of the wild-type B. subtilis 168 as a control strain during exponentially growing period on LBG medium. These conditions corresponded to the state of high riboflavin production, which was growth related. For each comparison, two independent cultivations on LB medium with 1% glucose were performed, and exponentially growing cells (OD600 3â6) were harvested. The synthesis of cDNA and biotin-labeled cRNA were carried out exactly as described in the Affymetrix GeneChip Expression Analysis Technical Manual (2000).