Project description:microRNA transcriptome data from wild type and Gata6-deficient tissue resident peritoneal macrophages. Tissue resident macrophages are notoriously heterogeneous, exhibiting discrete phenotypes as a consequence of tissue- and micro-anatomical niche-specific functions, but the molecular basis for this is not understood. Gata6 itself has been shown to be a target of multiple miR. However, microRNA transcriptome and its dependence on tissue-specific macrophage programming, such as effected by GATA6, has not been explored. We used microRNA sequencing to determine the patterns of microRNA expression in peritoneal resident macrophages at homeostasis in the absence of GATA-6 against wild type.
Project description:RNA transcriptome data from C57BL/6 tissue resident peritoneal macrophages over expressing microRNA 708 or control. The role of microRNA-708 in shaping macrophage biology remains mostly unknown. Here, using lentiviral vectors we overexpressed microRNA-708 in vivo in C57BL/6 mice peritoneal macrophages and investigated mRNA changes in these cells after 4 days.
Project description:Purpose: Characterize the gene expression profile of of peritoneal mouse macrophages in Endotoxic shock and Tolerance through RNA sequencing Methods: RNA sequencing of RNA from peritoneal macrophages in Endotoxic shock and Tolerance isolated by peritoneal lavage and FACS sorting (F4/80+ CD11b+) Results: Endotoxic shock and Tolerance peritoneal mouse macrophages display differential gene expression. Conclusions: Endotoxic shock and Tolerance peritoneal mouse macrophages display differential gene expression.
Project description:Tissue resident macrophages are notoriously heterogeneous, exhibiting discrete phenotypes as a consequence of tissue- and micro-anatomical niche-specific functions, but the molecular basis for this is not understood. We resolved a restricted transcriptional profile for the self-renewing population of peritoneal resident macrophages, which is expressed during homeostasis and inflammation and distinct from other MØ. Prominent within this profile was the expression of Gata6. This study represents a characterisation of the role of Gata6 in peritoneal resident macrophage phenotype. We used microarrays to determine the patterns of gene expression in peritoneal resident MØ in the absence of GATA-6 against wild type.