Project description:Reactivation of the telomerase reverse transcriptase subunit, TERT, is linked to tumourigenesis due to well-documented telomere-dependent and independent functions. The aim of this study was to investigate the effect of the telomerase inhibitor, MST-312, on TERT functions, focusing in particular, on its effects on MYC stabilty and MYC-regulated pathways, in order to assess its potential as a therapeutic agent. We demonstrate that MST-312 reduces MYC levels in cancer cells, leading to reduced MYC levels on chromatin, and subsequently affecting the MYC-regulated transcriptional program. As a result, MST-312 treatment increases the survival of lymphoma-bearing mice. Mechanistically, MST-312 affects the conformation of TERT, leading to TERT/Terc dissociation, and the subsequent loss of both its telomere-dependent and independent functions. Based on the presented data, we conclude that MST-312 treatment is a promising therapeutic strategy, in particular, in MYC-driven tumorus.
Project description:Aspergillus display an amazing level of diversity in physiologies, and environments that they occupy. Strategies for coping with diverse environmental stresses have evolved in different Aspergillus species. Therefore, Aspergillus are considered to be good models for investigating the adaptation and response to many natural and anthropogenic environmental stressors. Recent genome sequencing projects in several Aspergillus have provided insights into the molecular and genetic mechanisms underlying their responses to some environmental stressors. However, to better clarify the conserved and differentiated features of the adaptive response to specific stresses and to trace the evolutionary process of environmental adaptation and response in Aspergillus, insight from more Aspergillus species with different evolutionary positions, such as A. glaucus, and thus offer a large number of models of adaptation and response to various environmental stresses. Here, we report a high-quality reference genome assembly of A. glaucus CCHA from the surface of wild vegetation around saltern of Jilin, China, based on sequence data from whole-genome shotgun (WGS) sequencing platforms of Illumina solexa technologies. This assembly contains 106 scaffolds ( >1 Kb; N50 = ~0.795 Mb), has a length of ~28.9 Mb and covers ~97% of the predicted genome size (~120 Mb). Together with the data analyses from comprehensive transcriptomic surveys and comparative genomic analyses, we aim to obtain new insights into molecular mechanisms of the adaptation to living at high salt in the saltern
Project description:Reactivation of the telomerase reverse transcriptase subunit, TERT, is linked to tumourigenesis due to well-documented telomere-dependent and independent functions. The aim of this study was to investigate the effect of the telomerase inhibitor, MST-312, on TERT functions, focusing in particular, on its effects on MYC stabilty and MYC-regulated pathways, in order to assess its potential as a therapeutic agent. We demonstrate that MST-312 reduces MYC levels in cancer cells, leading to reduced MYC levels on chromatin, and subsequently affecting the MYC-regulated transcriptional program. As a result, MST-312 treatment increases the survival of lymphoma-bearing mice. Mechanistically, MST-312 affects the conformation of TERT, leading to TERT/Terc dissociation, and the subsequent loss of both its telomere-dependent and independent functions. Based on the presented data, we conclude that MST-312 treatment is a promising therapeutic strategy, in particular, in MYC-driven tumorus.
Project description:Investigation of whole genome gene expression level changes in Aspergillus nidulans AN1599 (PbcR) overexpression mutant, compared to the FGSC A4 wild-type strain. Overexpression of the Zn(II)2Cys6 –type transcription factor, AN1599.4 (PbcR, pimaradiene biosynthetic cluster regulator), activates a secondary metabolite gene cluster in Aspergillus nidulans. Activation of the pathway in Aspergillus nidulans lead to a production of ent-pimara-8(14),15-diene.
Project description:Using transcriptomics, the strain-specific metabolism was mapped for two whole-genome sequenced strains of Aspergillus niger Keywords: Strain comparison