Project description:Tomato, a Strategy I model plant for Fe deficiency, is an important economical crop. The transcriptional responses induced by Fe deficiency in tomato roots were previously described (Zamboni et al., 2012). The changes in trascriptome caused by the supply of Fe to plants starved fro 1 week were described in relation to the different nature of chelating agents (Fe-WEHS, Fe-CITRATE and Fe-PS).
Project description:Tomato, a Strategy I model plant for Fe deficiency, is an important economical crop. The transcriptional responses induced by Fe deficiency in tomato roots were previously described (Zamboni et al., 2012). The changes in trascriptome caused by the supply of Fe to plants starved fro 1 week were described in relation to the different nature of chelating agents (Fe-WEHS, Fe-CITRATE and Fe-PS). Transcriptional profile obtained by roots (27-d) of 21-d-old tomato plants starved of iron (0 μM Fe-EDTA) for 1 week and supplied for 1 h with 1 μM of Fe as Fe-WEHS (supply_Fe_WEHS), Fe citrate (supply_Fe_CITRATE) and Fe-PS (supply_Fe_PS). Tomato plants were hydroponically grown in all three case of Fe supply. Three different biological replicates were used for each sample repeating the experiment three times. All samples were obtained pooling roots of six plants (27-d-old).
Project description:Iron (Fe) deficiency is a yield-limiting factor for a variety of field crops across the world and generally results from the interaction of limited soil Fe bioavailability and susceptible genotype cultivation. Tomato, a Strategy I, model plant for Fe deficiency, is an important economical crop. Tomato responses in order to improve Fe uptake are based on acidification of rhizosphere, reduction of Fe3+ to Fe2+ and transport of Fe2+ into the cells.
Project description:Iron (Fe) deficiency is a yield-limiting factor for a variety of field crops across the world and generally results from the interaction of limited soil Fe bioavailability and susceptible genotype cultivation. Tomato, a Strategy I, model plant for Fe deficiency, is an important economical crop. Tomato responses in order to improve Fe uptake are based on acidification of rhizosphere, reduction of Fe3+ to Fe2+ and transport of Fe2+ into the cells. Transcriptional profile obtained by roots (27-d) of 21-d-old tomato plants starved of iron for an additional week was compared with the transcriptional profile obtained for roots (27-d) of 21-d-old tomato plants grown for an additional week at 100 M-NM-<M Fe. Tomato plants were hydroponically grown in both cases. Three different biological replicates were used for each sample repeating the experiment three times. All samples were obtained pooling roots of six plants (27-d-old).
Project description:a novel orphan peptide, IRON-REGULATED PROTEIN1 (IRP1) that is rapidly induced by Fe deficiency and improves growth on Fe-deplete media. In Arabidopsis, ectopic expression of IRP1 affected the activity of several genes involved in Fe acquisition and homeostasis, causing a dramatic increase of Fe in leaves and enhanced seed Fe loading. Heterologous expression of IRP1 in tomato plants resulted in increased Fe levels in fruits. Integration of AtIRP1 into the genome of crop plants may represent a novel strategy for Fe biofortification.
Project description:a novel orphan peptide, IRON-REGULATED PROTEIN1 (IRP1) that is rapidly induced by Fe deficiency and improves growth on Fe-deplete media. In Arabidopsis, ectopic expression of IRP1 affected the activity of several genes involved in Fe acquisition and homeostasis, causing a dramatic increase of Fe in leaves and enhanced seed Fe loading. Heterologous expression of IRP1 in tomato plants resulted in increased Fe levels in fruits. Integration of AtIRP1 into the genome of crop plants may represent a novel strategy for Fe biofortification. wild type Col-0 and transgenic overexpressor IRP1-OE plants were grown under normal conditions or subjected to and iron-starvation for 3 days. Roots and shoots were collected with 3 biological replicates.
Project description:Background: Witches’ broom disease of Mexican lime (Citrus aurantifolia L.), which is caused by the phytoplasma “Candidatus Phytoplasma aurantifolia”, is a devastating disease that results in significant economic losses. Plants adapt to abiotic stresses by regulating gene expression at the transcriptional and post-transcriptional levels. MicroRNAs (miRNAs) are a recently identified family of molecules that regulate plant responses to environmental stresses through post-transcriptional gene silencing. Methods: Using a high-throughput approach to sequence small RNAs, we compared the expression profiles of miRNAs in healthy Mexican lime trees and in plants infected with “Ca. Phytoplasma aurantifolia”. Results: Our results demonstrated the involvement of different miRNAs in the response of Mexican lime trees to infection by “Ca. Phytoplasma aurantifolia”. We identified miRNA families that are expressed differentially upon infection with phytoplasmas. Most of the miRNAs had variants with small sequence variations (isomiRs), which are expressed differentially in response to pathogen infection. Conclusions: It is likely that the miRNAs that are expressed differentially in healthy and phytoplasma-infected Mexican lime trees are involved in coordinating the regulation of hormonal, nutritional, and stress signalling pathways, and the complex interactions between them. Future research to elucidate the roles of these miRNAs should improve our understanding of the level of diversity of specific plant responses to phytoplasmas.
2013-03-09 | GSE44279 | GEO
Project description:Effects of silicon application under Fe deficiency in tomato
Project description:Iron (Fe) and copper (Cu) are essential metal micronutrients that are necessary for many redox reactions. The uptake of these metals is tightly regulated in plants. Some redox processes can alternatively use Fe-containing proteins or Cu-containing proteins, depending on nutritional status. Copper deficiency can rescue a Cucumis melo Fe uptake deficient mutant, and Fe deficiency can result in increased accumulation of Cu. However, the system responsible for Fe-deficiency-regulated Cu-uptake is unknown. To understand the genes and gene networks associated with Fe-deficiency regulated Cu uptake and Fe-Cu cross-talk, we conducted transcriptomic profiling of roots and rosettes of spl7 (a Cu uptake deficient mutant in arabidopsis) and Col-0 (WT) grown under Fe, Cu and simultaneous Fe and Cu deficiency conditions.