Project description:Antibiotic use can lead to expansion of multi-drug resistant pathobionts within the gut microbiome that can cause life-threatening infections. Selective alternatives to conventional antibiotics are in dire need. Here, we describe a Klebsiella PhageBank that enables the rapid design of antimicrobial bacteriophage cocktails to treat multi-drug resistant Klebsiella pneumoniae. Using a transposon library in carbapenem-resistant K. pneumoniae, we identified host factors required for phage infection in major Klebsiella phage families. Leveraging the diversity of the PhageBank and experimental evolution strategies, we formulated combinations of phages that minimize the occurrence of phage resistance in vitro. Optimized bacteriophage cocktails selectively suppressed the burden of multi-drug resistant K. pneumoniae in the mouse gut microbiome and drove bacterial populations to lose key virulence factors that act as phage receptors. Further, phage-mediated diversification of bacterial populations in the gut enabled co-evolution of phage variants with higher virulence and a broader host range. Altogether, the Klebsiella PhageBank represents a roadmap for both phage researchers and clinicians to enable phage therapy against a critical multidrug-resistant human pathogen.
Project description:Phage therapy is a therapeutic approach to treat multidrug resistant infections that employs lytic bacteriophages (phages) to eliminate bacteria. Despite the abundant evidence for its success as an antimicrobial in Eastern Europe, there is scarce data regarding its effects on the human host. Here, we aimed to understand how lytic phages interact with cells of the airway epithelium, the tissue site that is colonized by bacterial biofilms in numerous chronic respiratory disorders. Using a panel of Pseudomonas aeruginosa phages and human airway epithelial cells derived from a person with cystic fibrosis, we determined that interactions between phages and epithelial cells depend on specific phage properties as well as physiochemical features of the microenvironment. Although poor at internalizing phages, the airway epithelium responds to phage exposure by changing its transcriptional profile and secreting antiviral and proinflammatory cytokines that correlate with specific phage families. Overall, our findings indicate that mammalian responses to phages are heterogenous and could potentially alter the way that respiratory local defenses aid in bacterial clearance during phage therapy. Thus, besides phage receptor specificity in a particular bacterial isolate, the criteria to select lytic phages for therapy should be expanded to include mammalian cell responses.
Project description:Klebsiella pneumoniae has risen to prominence as a major threat to human health, with hypervirulent and drug-resistant lineages spreading globally. Given their antimicrobial resistant phenotypes, new therapies are required for the treatment of these infections, and bacteriophages (phages) that kill Klebsiella are being identified for use in phage therapy. In order to circumvent the evolution of phage-resistance taking hold the way that drug-resistance has, clear and considered actions are needed in selecting the phages that would be used in therapeutic cocktails. It is known that annotation of phage genomes is poor, potentially obscuring those phages with the most therapeutic potential. Here we show that phages isolated from infrequently sampled environments have features of therapeutic potential and developed a computational tool called STEP3 to understand the evolutionary features that distinguish the component parts of diverse phages, features that proved particularly suitable to detection of virion proteins with only distantly related homologies. These features were integrated into an ensemble framework to achieve a stable and robust prediction performance by STEP3. Proteomics-based analysis of two phages validated the prediction accuracy of STEP3 and revealed the virions contain component parts that include DNA-binding factors, otherwise unrecognizable capsule degradation enzymes and membrane translocation factors.
Project description:hvKP ATCC43816 and its lytic phage H5 were employed as a phage-antibiotic combination model. Based on the comprehensive characterization of phages, including cryo-electron microscopy, we evaluated the synergic effect of H5 on bacterial killing in vitro when combined with multiple antibiotics, and analyzed the advantages of phage-antibiotic combinations from an evolutionary perspective and proposes a novel PAS mechanism by using ceftazidime as an example.
Project description:Bacteriophages (hereafter “phages”) are ubiquitous predators of bacteria in the natural world, but interest is growing in their development into antibacterial therapy as complement or replacement for antibiotics. However, bacteria have evolved a huge variety of anti-phage defense systems allowing them to resist phage lysis to a greater or lesser extent, and in pathogenic bacteria these inevitably impact phage therapy outcomes. In addition to dedicated phage defense systems, some aspects of the general stress response also impact phage susceptibility, but the details of this are not well known. In order to elucidate these factors in the opportunistic pathogen Pseudomonas aeruginosa, we used the laboratory-conditioned strain PAO1 as host for phage infection experiments as it is naturally poor in dedicated phage defense systems. Screening by transposon insertion sequencing indicated that the uncharacterized operon PA3040-PA3042 was potentially associated with resistance to lytic phages. However, we found that its primary role appeared to be in regulating biofilm formation. Its expression was highly growth-phase dependent and responsive to phage infection and cell envelope stress.
Project description:Bacteriophages (phages) are widespread in Streptococcus pneumoniae, with most strains carrying phage genomes integrated into the chromosome. RNA sequencing was utilised to explore whether phage gene expression could be detected. The pneumococcal reference strain PMEN3 (Spain9V-3), which contained two full-length phages and one partial phage, was grown in broth culture and mitomycin C was added to facilitate phage induction. PMEN3 culture samples were taken at sequential time points and RNA was extracted and sequenced.
Project description:Clinical case studies have reported that the combined use of specific lytic phage(s) and antibiotics reduces the severity of difficult-to-treat Pseudomonas aeruginosa infections in many patients. In vitro methods that attempt to reproduce specific pathophysiological conditions can provide a reliable assessment of the antibacterial effects of phages. Here, we measured bacterial killing kinetics and individual phage replication in different growth phases, including biofilms, elucidating factors influencing the efficacy of two phages against the laboratory strain P. aeruginosa PAO1. While two-phage combination treatment effectively eliminated P. aeruginosa in routine broth and in infected human lung cell cultures, the emergence of phage-resistant variants occurred under both conditions. Phage combination displayed initial inhibition of biofilm dispersal, but sustained control was achieved only with a combination of phages and meropenem. In contrast, surface-attached biofilm exhibited tolerance to phage and/or meropenem, suggesting a spatiotemporal variation in antibacterial effect. Moreover, the phage with the shorter lysis time killed P. aeruginosa more rapidly, selecting a specific nucleotide polymorphism that likely conferred a competitive disadvantage and cross resistance to the second phage of the combination. These findings highlight biofilm developmental phase, inter-phage competition and phage resistance as factors limiting the in vitro efficacy of a phage combination. However, their precise impact on the outcome of phage therapy remains uncertain, necessitating validation through phage efficacy trials in order to establish clearer correlations between laboratory assessments and clinical results.
Project description:Pseudomonas virus PA5oct has a large, linear, double-stranded DNA genome (286,783 bp) and is related to Escherichia phages 121Q/PBECO 4, Klebsiella phage vB_KleM-RaK2, Klebsiella phage K64-1, and Cronobacter phage vB_CsaM_GAP32. A protein-sharing network analysis highlights the conserved core genes within this clade. Combining hybrid genome sequencing, RNA-Seq and mass spectrometry analyses of its virion proteins allowed us to accurately identify genes and elucidate regulatory elements for this phage (ncRNAs, tRNAs and promoter elements). In total PA5oct encodes 449 CDS of which 93, have been identified as virion-associated based on ESI-MS/MS. The RNA-Seq-based temporal genome organization suggests a gradual take-over by viral transcripts from 21%, 69%, and 93% at 5, 15 and 25 min after infection, respectively . Like many large phages, PA5oct is not organized into contiguous regions of temporal transcription. However, although the temporal regulation of the PA5oct genome expression reveals specific genome clusters expressed in early and late infection, many genes encoding experimentally observed structural proteins surprisingly appear to remain almost untranscribed throughout the infection cycle. Within the host, operons associated with elements of a cryptic Pf1-like prophage are upregulated, as are operons responsible for Psl exopolysaccharide (pslE-J) and periplasmic nitrate reductase (napA-F) production. The characterization described here represents a crucial step towards understanding the genomic complexity as well as molecular diversity of jumbo viruses.