Project description:Rationale: Myocardial fibrosis manifests progressively in several forms of cardiomyopathies. Although fibrosis depicts a reparative mechanism, maladaptation of the heart due to excessive production of extracellular matrix accelerates cardiac dysfunction. Objective: The anthraquinone Rhein, a compound from rhubarb, was examined for its anti-fibrotic potency to mitigate cardiac fibroblast-to-myofibroblast transition (FMT). Methods and Results: Primary human ventricular cardiac fibroblasts were subjected to hypoxia and characterized with proteomics, transcriptomics and cell functional techniques. Knowledge based analyses of the omics data revealed a modulation of fibrosis-associated pathways and cell cycle due to Rhein administration, whereas p53 and p21 were identified as upstream regulators involved in the manifestation of cardiac fibroblast phenotypes. Mechanistically, Rhein-mediated cellular effects were linked to the histone deacetylase (HDAC)-dependent acetylation status of p53 a posttranslational modification that acts protein stabilizing. Direct enzymatic testing revealed an inhibitory potency of Rhein for HDAC classes I/II. Functionally, Rhein inhibited collagen contraction in response to protein abundance of SMAD7, endogenous inhibitor of TGFβ1 action, thus demonstrating its anti-fibrotic property in cardiac remodeling. Conclusion: In conclusion, this study identifies Rhein as a novel potent HDAC inhibitor and provides evidence that Rhein may contribute to the treatment of cardiac fibrosis as anti-fibrotic agent. As readily available drug with approved safety, Rhein constitutes a promising potential therapeutic approach in the supplemental and protective intervention of cardiac fibrosis.
Project description:Although fibrosis depicts a reparative mechanism, maladaptation of the heart due to excessive production of extracellular matrix accelerates cardiac dysfunction. The anthraquinone Rhein was examined for its anti-fibrotic potency to mitigate cardiac fibroblast-to-myofibroblast transition (FMT). Primary human ventricular cardiac fibroblasts were subjected to hypoxia and characterized with proteomics, transcriptomics and cell functional techniques. Knowledge based analyses of the omics data revealed a modulation of fibrosis-associated pathways and cell cycle due to Rhein administration during hypoxia, whereas p53 and p21 were identified as upstream regulators involved in the manifestation of cardiac fibroblast phenotypes. Mechanistically, Rhein-mediated cellular effects were linked to the histone deacetylase (HDAC)-dependent acetylation status of p53 a posttranslational modification that acts protein stabilizing. Direct enzymatic testing revealed an inhibitory potency of Rhein for HDAC classes I/II. Functionally, Rhein inhibited collagen contraction in response to protein abundance of SMAD7, thus demonstrating its anti-fibrotic property in cardiac remodeling. In conclusion, this study identifies Rhein as a novel potent HDAC inhibitor and provides evidence that Rhein may contribute to the treatment of cardiac fibrosis as anti-fibrotic agent. As readily available drug with approved safety, repurposing of Rhein constitutes a promising potential therapeutic approach in the supplemental and protective intervention of cardiac fibrosis.
Project description:Although fibrosis depicts a reparative mechanism, maladaptation of the heart due to excessive production of extracellular matrix accelerates cardiac dysfunction. The anthraquinone Rhein was examined for its anti-fibrotic potency to mitigate cardiac fibroblast-to-myofibroblast transition (FMT). Primary human ventricular cardiac fibroblasts were subjected to hypoxia and characterized with proteomics, transcriptomics and cell functional techniques. Knowledge based analyses of the omics data revealed a modulation of fibrosis-associated pathways and cell cycle due to Rhein administration during hypoxia, whereas p53 and p21 were identified as upstream regulators involved in the manifestation of cardiac fibroblast phenotypes. Mechanistically, Rhein acts inhibitory on HDAC classes I/II as enzymatic inhibitor. Rhein-mediated cellular effects were linked to the histone deacetylase (HDAC)-dependent protein stabilization of p53 under normoxic but not hypoxic conditions. Functionally, Rhein inhibited collagen contraction, indicating anti-fibrotic property in cardiac remodeling. This was accompanied by increased abundance of SMAD7, but not SMAD2/3, and consistently SMAD-specific E3 ubiquitin ligase SMURF2. In conclusion, this study identifies Rhein as a novel potent direct HDAC inhibitor that may contribute to the treatment of cardiac fibrosis as anti-fibrotic agent. As readily available drug with approved safety, Rhein constitutes a promising potential therapeutic approach in the supplemental and protective intervention of cardiac fibrosis.
Project description:Lung cancer is the leading cause of cancer mortality worldwide, yet the therapeutic strategy for advanced non-small cell lung cancer (NSCLC) is limitedly effective. In addition, validated histone deacetylase (HDAC) inhibitors for the treatment of solid tumors remain to be developed. Here, we propose a novel HDAC inhibitor, OSU-HDAC-44, as a chemotherapeutic drug for NSCLC. OSU-HDAC-44 was a pan-HDAC inhibitor and exhibits 3-4 times more effectiveness than suberoylanilide hydroxamic acid (SAHA) in suppressing cell viability in various NSCLC cell lines. Upon OSU-HDAC-44 treatment, mitosis and cytokinesis were inhibited and subsequently led to mitochondria-mediated apoptosis. The cytokinesis inhibition resulted from OSU-HDAC-44-mediated degradation of mitosis and cytokinesis regulators Auroroa B and survivin. The deregulation of F-actin dynamics induced by OSU-HDAC-44 was associated with reduction in RhoA activity resulting from srGAP1 induction. Chromatin-immunoprecipitation-on-chip analysis revealed that OSU-HDAC-44 induced chromatin loosening and facilitated transcription of genes involved in crucial signaling pathways such as apoptosis, axon guidance and protein ubiquitination. Finally, OSU-HDAC-44 efficiently inhibited A549 xenograft tumor growth and induced acetylation of histone and non-histone proteins and apoptosis in vivo. Collectively, our data provide compelling evidence that OSU-HDAC-44 is a potent HDAC targeted inhibitor and can be tested for NSCLC chemotherapy. ChIP-chip analysis for H3K9K14ac in A549, H1299 and CL1-1 lung cancer cells treated with 2.5 uM histone deacetylase inhibitor, OSU-HDAC-44, for 2 hours.
Project description:Class I histone deacetylase (HDAC) inhibitors are believed to have positive effects on neurite outgrowth, synaptic plasticity, and neurogenesis in adult brain. However, the downstream targets of class I HDAC inhibitor treatment in neurons are fully unclear. Although class I HDAC inhibitors are thought to broadly promote transcription of many neuronal genes through enhancement of histone acetylation, it is very interesting that the gene set might include as yet unidentified genes that are essential for neuronal survival and function. To identify novel target genes of class I HDAC inhibitor treatment, we screened transcripts of neuronal cultures with microarray using valproate acid.
Project description:Gene expression profiles of E14 embryonic stem cells (ESCs) before and after treatment with low levels of the histone deacetylase (HDAC) inhibitor valproic acid (VPA).
Project description:Lung cancer is the leading cause of cancer mortality worldwide, yet the therapeutic strategy for advanced non-small cell lung cancer (NSCLC) is limitedly effective. In addition, validated histone deacetylase (HDAC) inhibitors for the treatment of solid tumors remain to be developed. Here, we propose a novel HDAC inhibitor, OSU-HDAC-44, as a chemotherapeutic drug for NSCLC. OSU-HDAC-44 was a pan-HDAC inhibitor and exhibits 3-4 times more effectiveness than suberoylanilide hydroxamic acid (SAHA) in suppressing cell viability in various NSCLC cell lines. Upon OSU-HDAC-44 treatment, mitosis and cytokinesis were inhibited and subsequently led to mitochondria-mediated apoptosis. The cytokinesis inhibition resulted from OSU-HDAC-44-mediated degradation of mitosis and cytokinesis regulators Auroroa B and survivin. The deregulation of F-actin dynamics induced by OSU-HDAC-44 was associated with reduction in RhoA activity resulting from srGAP1 induction. Chromatin-immunoprecipitation-on-chip analysis revealed that OSU-HDAC-44 induced chromatin loosening and facilitated transcription of genes involved in crucial signaling pathways such as apoptosis, axon guidance and protein ubiquitination. Finally, OSU-HDAC-44 efficiently inhibited A549 xenograft tumor growth and induced acetylation of histone and non-histone proteins and apoptosis in vivo. Collectively, our data provide compelling evidence that OSU-HDAC-44 is a potent HDAC targeted inhibitor and can be tested for NSCLC chemotherapy.
Project description:Histone deacetylase (HDAC) inhibitors are part of a new generation of epigenetic drugs for cancer treatment. It is known that histone acetylation plays a key role in controlling essential chromosome functions, including gene regulation, and this process has been linked with cancer development and progression. Better understanding of molecular mechanisms involving HDAC inhibitors is needed for the design of new targeted drugs, and also to evaluate the effectiveness of current treatments. In this study, an untargeted metabolomics approach was used to identify intracellular metabolite deregulation after treating cancer cell lines with the HDAC inhibitor HC-Toxin. Metabolomics analysis was performed using high resolution mass spectrometry, in combination with univariate and multivariate statistics and pathway analysis. HDAC inhibition showed highly specific metabolic changes in cancer cell lines compared to non-cancerous cells. In particular, N-acetyl-L-cysteine, N-acetylmethionine, and N-acetyl-L-carnitine showed a dose dependent change. Moreover, pathways controlling protein biosynthesis, as well as tryptophan, cysteine and methionine metabolism were significantly altered by HDAC inhibition. This study illustrates that HDAC inhibition has multiple effects on different metabolic pathways and our results can be extrapolated to inform on the molecular transitions in human cells.
Project description:Rhabdoid tumors are a highly aggressive pediatric tumor entity affecting infants and very young children. These tumors do not respond to conventional type chemotherapy. In recent approaches epigenetic compounds has been effective to inhibit cell growth of these tumors. Using microarray analysis we detect mechanism which are responsible for cell death induced by histone deacetylase inhibitors. A204 rhaboid tumor cell lines were treated for 12h with the HDAC inhibitor SAHA
Project description:assess the efficacy of ST7612AA1 oral pan-histone deacetylase inhibitor (HDACi), with respect to various solid and haematological tumors, and to characterize its mechanism of action