Project description:small RNA seq form Hek 293 using IonTorrent Sequencing; To assess the general expression of snoRNA derived miRNA like fragments in Hek293. Three independent small RNA libraries were sequenced, aligned and subset for snoRNA (C/D, H/ACA, Small Cajal bodies); analysis of read-length for individual snoRNAs was used to define fragments, then to define coherent processing or degradation of the fragments the location of individual reads over the snoRNA annotation was define.
Project description:Ribosome biosynthesis plays a crucial role in regulating protein translation and is essential for cell growth and development in physiological progress. The progression and recurrence of Pterygia mainly occur due to the abnormal proliferation and migration of stromal Pterygia fibroblasts. Small nucleolar RNA U3 (U3 snoRNA), harboring the atypical C/D boxes, is involved in 18S ribosomal RNA (18S rRNA) synthesis; however, the mechanism of U3 snoRNA in Pterygia remains unclear. Methods: Primary HCFs and HPFs were separated and cultured from fresh conjunctival grafts and Pterygia tissues. The PLKO.1 lentiviral system and CRISPR/Cas9 recombinant construct were, respectively, used to overexpress and silence U3 snoRNA in HPF and HCF cells for further specific phenotypes analysis. RNA-seq and TMT-labeled quantitative protein mass spectrometry were utilized to evaluate the effect of U3 snoRNA on mRNA transcripts and protein synthesis. Results: Reduced U3 snoRNA in Pterygia promotes HCF or HPF cells' proliferation, migration, and cell cycle but has no significant effect on apoptosis. U3 snoRNA modulates 18S rRNA synthesis through shearing precursor ribosomal RNA 47S rRNA at the 5′ external transcribed spacer (5′ ETS). Moreover, the altered U3 snoRNA causes mRNA and protein differential expression in HCF or HPF cells. Conclusion: The atypical U3 snoRNA regulates the translation of specific proteins to exert a suppressive function in Pterygia through modulating the 18S RNA synthesis. Here, we uncover a novel insight into U3 snoRNA biology in the development of Pterygia.
Project description:Osteoarthritis (OA) is a chronic debilitating joint disease which is strongly associated with ageing. OA involves pathological cellular processes in all joint structures and affects articular cartilage integrity, leading to dysfunctional joint articulation. The biomolecular processes that catalyze the disturbances in the articular chondrocyte phenotype leading to OA are poorly understood, and it is expected that a comprehensive understanding of the avenues leading to catabolic changes and disruption of articular chondrocyte homeostasis will provide important cues for future treatments of the condition. Chondrocytes are specialized secretory cells with highly active protein translational machinery, enabling the synthesis and maintenance of the protein-rich cartilage extracellular matrix (ECM). Disturbances in chondrocyte protein translation in cartilage development and OA are connected to mTOR activity, ER stress, unfolded protein response (UPR)and CHOP-mediated apoptosis. These responses change the downstream translational activity of the biosynthesized ribosome. The assembled mammalian ribosome is built from ribosomal RNAs (rRNAs), together with more than 80 different protein subunits. At the heart of the ribosome, the 18S rRNA guides the decoding of the mRNA message, while an ancient ribozyme activity in the 28S rRNA forms the core of the peptidyltransferase center that polymerizes the amino acid sequence encoded by the mRNA into functional proteins. Post-transcriptional maturation of rRNAs is an integral part of the biosynthesis of ribosomes and ribonucleolytic processing of the major 47S rRNA precursor into mature 18S, 5.8S, and 28S rRNAs is rate limiting for ribosome biogenesis. The U3 small nucleolar RNA (snoRNA) is an evolutionarily highly conserved box C/D-class snoRNA which catalyzes the endoribonucleolytic processing of the 5’ external transcribed spacer (ETS) of the 47S pre-rRNA by base complementarity-guided pre-rRNA substrate recognition and plays a crucial role in the maturation of 18S rRNA. Although extensively studied in yeast, it was only recently demonstrated that U3 snoRNA is indispensable for rRNA maturation in human cells. Pathways controlling ribosome activity have previously been described in the regulation of chondrocyte homeostasis. We here now postulate that not only ribosome activity is involved in chondrocyte homeostasis, but that OA pathophysiological situations can also cause alterations in chondrocyte ribosome biogenesis with consequences for cellular protein translation. Since U3 snoRNA-driven rRNA production is rate-limiting in ribosome biogenesis, we hypothesized that the U3 snoRNA is critical for chondrocyte homeostasis. In this study we therefor aimed to determine whether OA pathophysiological conditions interact with chondrocyte U3 snoRNA levels, thereby influencing rRNA levels and chondrocyte translation capacity.
Project description:We used a molecular barcoding approach to quantify the fitness of ~60,000 randomly mutated variants of the Saccharomyces cerevisiae U3 snoRNA (the data were further used to calculate a map of intragenic epistatic interactions within this RNA molecule, as descibed in Puchta et al. 2016)
Project description:MicroRNAs (miRNAs) are important regulators of eukaryotic gene expression and their dysfunction is often associated with cancer. Alongside the canonical miRNA biogenesis pathway involving stepwise processing and export of pri- and pre-miRNA transcripts by the microprocessor complex, Exportin 5 and Dicer, several alternative mechanisms of miRNA production have been described. Here, we reveal that the atypical box C/D snoRNA U3, which functions as a scaffold during early ribosome assembly, is a miRNA source. We show that a unique stem-loop structure in the 5' domain of U3 is processed to form short RNA fragments that associate with Argonaute. miR-U3 production is independent of Drosha, and an increased amount of U3 in the cytoplasm in the absence of Dicer suggests that a portion of the full length snoRNA is exported to the cytoplasm where it is efficiently processed into miRNAs. Using reporter assays, we demonstrate that miR-U3 can act as a low proficiency miRNA in vivo and our data support the 3' UTR of the sortin nexin SNX27 mRNA as an endogenous U3-derived miRNA target. We further reveal that perturbation of U3 snoRNP assembly induces miR-U3 production, highlighting potential cross-regulation of target mRNA expression and ribosome production.
Project description:We used a molecular barcoding approach to quantify the fitness of ~60,000 randomly mutated variants of the Saccharomyces cerevisiae U3 snoRNA (the data were further used to calculate a map of intragenic epistatic interactions within this RNA molecule, as descibed in Puchta et al. 2016) We generated two independent mutant libraries ('Small' with ~3 and 'Big' with ~10 SNPs per allele) on centromeric plasmid, with 20nt random barcodes placed in a non-transcribed region downstream of the gene (PE Samples 30-37 - paired-end sequencing of: U3, 70nt linker and 20nt barcode); next we performed competiton experiments in several conditions (E1-5) on populations of yeast cells transformed with both libraries and measured frequencies of mutated variants in time-points during the experiment by deep sequencing of barcodes (Samples 1-29).
Project description:SIRT7 is an NAD+-dependent protein deacetylase with important roles in ribosome biogenesis and cell proliferation. Previous studies have established that SIRT7 is associated with RNA polymerase I, interacts with pre-rRNA and promotes rRNA synthesis. Here we show that SIRT7 is also associated with snoRNAs that are involved in pre-rRNA processing and rRNA maturation. Knockdown of SIRT7 impairs U3 snoRNA-dependent early cleavage steps that are necessary for generation of 18S rRNA. Mechanistically, SIRT7 deacetylates U3-55k, a core component of the U3 snoRNP complex, and reversible acetylation of U3-55k modulates the association of U3-55k with U3 snoRNA. Deacetylation by SIRT7 enhances U3-55k binding to U3 snoRNA, which is a prerequisite for pre-rRNA processing. Under stress conditions, SIRT7 is released from nucleoli, leading to hyperacetylation of U3-55k and attenuation of prerRNA processing. The results reveal a multifaceted role of SIRT7 in ribosome biogenesis, regulating both transcription and processing of rRNA. CLIP-seq was performed in Flag-SIRT7-293T cells.
Project description:In eukaryotes, biogenesis of ribosomes requires folding and assembly of the precursor rRNA (pre-rRNA) with a large number of proteins and snoRNPs into huge RNA-protein complexes. In spite of intense genetic, biochemical and high resolution cryo-EM studies in Saccharomyces cerevisiae, information about the conformation of the earliest 35S pre-rRNA is limited. To overcome this, we performed high-throughput SHAPE chemical probing on the 35S pre-rRNA associated with 90S pre-ribosomes. We focused our analyses on external (5´ETS) and internal (ITS1) transcribed spacers as well as the 18S region. We show that in the 35S pre-rRNA, the central region of the 18S is in a more open configuration compared to 20S pre-rRNA and that the central pseudoknot is not formed. The essential ribosome biogenesis protein Mrd1 influences the structure of the 18S part locally and is involved in organizing the central pseudoknot and surrounding structures. Our results demonstrate that the U3 snoRNA dynamically interacts with the 35S pre-rRNA and that Mrd1 is required for disrupting U3 snoRNA base-pairing interactions in the 5'ETS. We propose that the dynamic U3 snoRNA interactions and Mrd1 are essential for establishing the structure of the central region of 18S that is required for processing and 40S subunit function.
Project description:SIRT7 is an NAD+-dependent protein deacetylase with important roles in ribosome biogenesis and cell proliferation. Previous studies have established that SIRT7 is associated with RNA polymerase I, interacts with pre-rRNA and promotes rRNA synthesis. Here we show that SIRT7 is also associated with snoRNAs that are involved in pre-rRNA processing and rRNA maturation. Knockdown of SIRT7 impairs U3 snoRNA-dependent early cleavage steps that are necessary for generation of 18S rRNA. Mechanistically, SIRT7 deacetylates U3-55k, a core component of the U3 snoRNP complex, and reversible acetylation of U3-55k modulates the association of U3-55k with U3 snoRNA. Deacetylation by SIRT7 enhances U3-55k binding to U3 snoRNA, which is a prerequisite for pre-rRNA processing. Under stress conditions, SIRT7 is released from nucleoli, leading to hyperacetylation of U3-55k and attenuation of prerRNA processing. The results reveal a multifaceted role of SIRT7 in ribosome biogenesis, regulating both transcription and processing of rRNA.