Project description:Bipolar disorder (BD) is a severe mental disorder characterized by repeated mood swings. Although genetic factors with small effect sizes are collectively associated with the pathophysiology of BD, the underlying molecular mechanisms, especially how environmental factors affect the brain genome, remain largely unknown. We revealed neuronal cell-type-specific, pathophysiology-related DNA methylation changes in the prefrontal cortex (PFC) of BD patients, highlighting the importance of the neural epigenome for understanding BD.
Project description:Analysis of gene-expression changes in depressed subjects with bipolar disorder compared to healthy controls. Results provide information on pathways that may be involved in the pathogenesis of bipolar depression. Total RNA isolated from PAXgene blood RNA tubes from 20 depressed subjects with bipolar disorder and 15 healthy controls.
Project description:Bipolar disorder (BD) is a highly heritable and heterogeneous mental illness whose manifestations often include impulsive and risk-taking behavior. This particular phenotype suggests that abnormal striatal function could be involved in BD etiology, yet most transcriptomic studies of this disorder have concentrated on cortical brain regions. We report the first transcriptome profiling by RNA-Seq of the human dorsal striatum comparing bipolar and control subjects. Differential expression analysis and functional pathway enrichment analysis were performed to identify changes in gene expression that correlate with BD status. Further co-expression and enrichment analyses were performed to identify sets of correlated genes that show association to BD. Total RNA samples were isolated from 36 postmortem dorsal striatum subjects (18 bipolar and 18 control) and sequenced. One outlier sample was removed and 35 samples (18 bipolar and 17 control) were analyzed.
Project description:Analysis of gene-expression changes in depressed subjects with bipolar disorder compared to healthy controls. Results provide information on pathways that may be involved in the pathogenesis of bipolar depression.
Project description:This SuperSeries is composed of the following subset Series:; GSE5388: Adult postmortem brain tissue (dorsolateral prefrontal cortex) in subjects with bipolar disorder; GSE5389: Adult postmortem brain tissue (ortibtofrontal cortex) in subjects with bipolar disorder; Bipolar affective disorder is a severe psychiatric disorder with a strong genetic component but unknown pathophysiology. We used microarray technology (Affymetrix HG-U133A GeneChips) to determine the expression of approximately 22 000 mRNA transcripts in post-mortem brain tissue (dorsolateral prefrontal cortex and orbitofrontal cortex) from patients with bipolar disorder and matched healthy controls. Experiment Overall Design: Refer to individual Series
Project description:We fine-mapped DNA methylation in neuronal nuclei (NeuN+) isolated by flow cytometry from post-mortem frontal cortex of the brain of individuals diagnosed with schizophrenia, bipolar disorder, and controls (n=29, 26, and 28 individuals).
Project description:Bipolar affective disorder is a severe psychiatric disorder with a strong genetic component but unknown pathophysiology. We used microarray technology (Affymetrix HG-U133A GeneChips) to determine the expression of approximately 22 000 mRNA transcripts in post-mortem brain tissue (dorsolateral prefrontal cortex) from patients with bipolar disorder and matched healthy controls. A cohort of 70 subjects was investigated and the final analysis included 30 bipolar and 31 control subjects. Differences between disease and control groups were identified using a rigorous statistical analysis with correction for confounding variables and multiple testing.
Project description:Evidence suggests accelerated aging mechanisms in bipolar disorder (BD), including DNA methylation (DNAm) aging in blood. However, it is unknown whether such mechanisms are also evident in the brain. To investigate this, we interrogated genome-wide DNA methylation in postmortem hippocampus from 32 BD-I patients and 32 age-, sex-, and race-matched non-psychiatric controls from the NIMH Human Brain Collection Core.
Project description:Bipolar disorder is a severe and heritable psychiatric disorder and affects up to 1% of the population worldwide. Lithium is recommended as first-line treatment for the maintenance treatment of bipolar-affective disorder in current guidelines, its molecular modes of action are however poorly understood. Cell models derived from bipolar patients could prove useful to gain more insight in the molecular mechanisms of bipolar disorder and the common pharmacological treatments. As primary neuronal cell lines cannot be easily derived from patients, peripheral cell models should be evaluated in their usefulness to study pathomechanisms and the mode of action of medication as well as in regard to develop biomarkers for diagnosis and treatment response.