Project description:In the opportunistic pathogen Pseudomonas aeruginosa RsmA is an RNA-binding protein that plays critical roles in the control of virulence, interbacterial interactions and biofilm formation. Although RsmA is thought to exert its regulatory effects by binding full-length transcripts, the extent to which RsmA binds nascent transcripts has not been addressed. Moreover, which transcripts are direct targets of this key post-transcriptional regulator is largely unknown. Using chromatin immunoprecipitation coupled with high-throughput DNA sequencing, with cells grown in the presence and absence of the RNA polymerase inhibitor rifampicin, we identify hundreds of nascent transcripts that RsmA associates with in P. aeruginosa. We also find that the RNA chaperone Hfq targets a subset of the RsmA-associated nascent transcripts and that the two RNA-binding proteins can exert regulatory effects on common targets. Our findings establish that RsmA associates with many transcripts as they are being synthesized in P. aeruginosa, identify the direct targets of RsmA, and suggest that RsmA and Hfq may act in a combinatorial fashion on certain target transcripts. More broadly, our data suggest that the binding of post-transcriptional regulators to nascent transcripts may be commonplace in bacteria where distinct regulators can function alone or in concert to achieve control over the translation of transcripts as soon as they emerge from RNA polymerase.
Project description:In the opportunistic pathogen Pseudomonas aeruginosa, RsmA is an RNA-binding protein that plays critical roles in the control of virulence, interbacterial interactions, and biofilm formation. Although RsmA is thought to exert its regulatory effects by binding full-length transcripts, the extent to which RsmA binds nascent transcripts has not been addressed. Moreover, which transcripts are direct targets of this key posttranscriptional regulator is largely unknown. Using chromatin immunoprecipitation coupled with high-throughput DNA sequencing, with cells grown in the presence and absence of the RNA polymerase inhibitor rifampicin, we identify hundreds of nascent transcripts that RsmA associates with in P. aeruginosa We also find that the RNA chaperone Hfq targets a subset of those nascent transcripts that RsmA associates with and that the two RNA-binding proteins can exert regulatory effects on common targets. Our findings establish that RsmA associates with many transcripts as they are being synthesized in P. aeruginosa, identify the transcripts targeted by RsmA, and suggest that RsmA and Hfq may act in a combinatorial fashion on certain transcripts. The binding of posttranscriptional regulators to nascent transcripts may be commonplace in bacteria where distinct regulators can function alone or in concert to achieve control over the translation of transcripts as soon as they emerge from RNA polymerase.
Project description:The RNA editing enzyme ADAR chemically modifies adenosine (A) to inosine (I), which is interpreted by the ribosome as a guanosine. Here we assess cotranscriptional A-to-I editing in Drosophila, by isolating nascent RNA from adult fly heads and subjecting samples to high-throughput sequencing. There are a large number of edited sites within nascent exons. Nascent RNA from an ADAR null mutant strain was also sequenced, indicating that almost all A-to-I events require ADAR. Moreover, mRNA editing levels correlate with editing levels within the cognate nascent RNA sequence, indicating that the extent of editing is set cotranscriptionally. Surprisingly, the nascent data also identify an excess of intronic over exonic editing sites. These intronic sites occur preferentially within introns that are poorly spliced cotranscriptionally, suggesting a link between editing and splicing. We conclude that ADAR-mediated editing is more widespread than previously indicated and largely occurs cotranscriptionally. GSM914095: Fly genomic DNA sequencing. Sequenced on the Illumina GA II. GSM914102-GSM914113: Fly head nascent RNA profiles over 6 time points of a 12hr light:dark cycle in duplicate; sequenced on the Illumina GA II. GSM914114-GSM914119: Fly head nascent RNA profiles of yw, FM7, ADAR0 males in duplicate; sequenced on the HiSeq2000. GSM915213-GSM915214: Fly head mRNA profiles over 2 time points of a 12hr light:dark cycle; sequenced on the Illumina GA II. GSM915215-GSM915220: Fly head mRNA profiles over 6 time points of a 12hr light:dark cycle; paired-end sequenced on the Illumina GA II. GSM915221-GSM91526: Fly head mRNA profiles over 6 time points of a 12hr light:dark cycle; sequenced on the Illumina GA II.
Project description:The RNA editing enzyme ADAR chemically modifies adenosine (A) to inosine (I), which is interpreted by the ribosome as a guanosine. Here we assess cotranscriptional A-to-I editing in Drosophila, by isolating nascent RNA from adult fly heads and subjecting samples to high-throughput sequencing. There are a large number of edited sites within nascent exons. Nascent RNA from an ADAR null mutant strain was also sequenced, indicating that almost all A-to-I events require ADAR. Moreover, mRNA editing levels correlate with editing levels within the cognate nascent RNA sequence, indicating that the extent of editing is set cotranscriptionally. Surprisingly, the nascent data also identify an excess of intronic over exonic editing sites. These intronic sites occur preferentially within introns that are poorly spliced cotranscriptionally, suggesting a link between editing and splicing. We conclude that ADAR-mediated editing is more widespread than previously indicated and largely occurs cotranscriptionally.
Project description:To determine the prevalence of cotranscriptional splicing in Drosophila, we sequenced nascent RNA transcripts from Drosophila S2 cells as well as from Drosophila heads. 87% of introns assayed manifest more than 50% cotranscriptional splicing. The remaining 13% are cotranscriptionally spliced poorly, or slowly, with ~3% being almost completely retained in nascent pre-mRNA. Although individual introns showed slight but statistically significant differences in splicing efficiency, similar global levels of splicing were seen from both sources. Importantly, introns with low cotranscriptional splicing efficiencies are present in the same primary transcript with efficiently spliced introns, indicating that splicing is intron-specific. The analysis also indicates that cotranscriptional splicing is less efficient for first introns, longer introns and introns annotated as alternative. FinallyFinally, S2 cells expressing the slow RpII215C4 mutant manifest substantially less intron retention than wild-type S2 cells. Examination of Total pA and Nascent RNA from 2 different cell populations and isolated fly heads.
Project description:Hfq is an RNA chaperone and an important post-transcriptional regulator in bacteria. Using chromatin immunoprecipitation coupled with high-throughput DNA sequencing (ChIP-seq), we show that Hfq associates with hundreds of different regions of the Pseudomonas aeruginosa chromosome. These associations are abolished when transcription is inhibited, indicating that they reflect Hfq binding to transcripts during their synthesis. Analogous ChIP-seq analyses with the post-transcriptional regulator Crc reveal that it associates with many of the same nascent transcripts as Hfq, an activity we show is Hfq dependent. Our findings indicate that Hfq binds many transcripts co-transcriptionally in P. aeruginosa, often in concert with Crc, and uncover direct regulatory targets of these proteins. They also highlight a general approach for studying the interactions of RNA-binding proteins with nascent transcripts in bacteria. The binding of post-transcriptional regulators to nascent mRNAs may represent a prevalent means of controlling translation in bacteria where transcription and translation are coupled.
Project description:To characterize the nascent transcriptome during zygotic genome activation (ZGA) of Xenopus laevis embryos, we microinjected 5-ethynyl uridine (EU) into 1-cell stage embryos and isolated total RNAs from whole embryos at 5, 6, 7, 8 and 9 hours post-fertilization (hpf) at room temperature, respectively, covering the stages of pre-ZGA to widespread ZGA (stage 7-9). To purify nascent transcripts, total RNAs were biotinylated using disulfide biotin azide via click reaction and biotinylated nascent transcripts were purified using streptavidin beads. Libraries were constructed from using the total RNA ('All'), nascent transcripts ('Bead') and the flowthrough after purification of nascent transcripts ('FL'), respectively. To categorize maternal-zygotic (MZ) genes and zygotic-only (Z) genes, total RNAs from eggs were isolated for constructing libraries. All libraries were sequenced on illumina NextSeq 500.