Project description:Rats anesthetized with the two anesthetics i.e. isoflurane and propofol respond differently to inflammation initiated by cecal ligation and puncture.
Project description:BACKGROUND:Emerging data suggests that volatile anesthetic agents may have organ protection properties in the setting of critical illness. The purpose of this study was to better understand the effect of inflammation on cerebral subcellular energetics in animals exposed to two different anesthetic agents-a GABA agonist (propofol) and a volatile agent (isoflurane). RESULTS:Forty-eight Sprague-Dawley rats were anesthetized with isoflurane or propofol. In each group, rats were randomized to celiotomy and closure (sham) or cecal ligation and puncture (inflammation [sepsis model]) for 8 h. Brain tissue oxygen saturation and the oxidation state of cytochrome aa3 were measured. Brain tissue was extracted using the freeze-blow technique. All rats experienced progressive increases in tissue oxygenation and cytochrome aa3 reduction over time. Inflammation had no impact on cytochrome aa3, but isoflurane caused significant cytochrome aa3 reduction. During isoflurane (not propofol) anesthesia, inflammation led to an increase in lactate (+ 0.64 vs. - 0.80 mEq/L, p = 0.0061). There were no differences in ADP:ATP ratios between groups. In the isoflurane (not propofol) group, inflammation increased the expression of hypoxia-inducible factor-1α (62%, p = 0.0012), heme oxygenase-1 (67%, p = 0.0011), and inducible nitric oxide synthase (31%, p = 0.023) in the brain. Animals exposed to inflammation and isoflurane (but not propofol) exhibited increased expression of protein carbonyls (9.2 vs. 7.0 nM/mg protein, p = 0.0050) and S-nitrosylation (49%, p = 0.045) in the brain. RNA sequencing identified an increase in heat shock protein 90 and NF-κβ inhibitor mRNA in the inflammation/isoflurane group. CONCLUSIONS:In the setting of inflammation, rats exposed to isoflurane show increased hypoxia-inducible factor-1α expression despite a lack of hypoxia, increased oxidative stress in the brain, and increased serum lactate, all of which suggest a relative increase in anaerobic metabolism compared to propofol. Differences in oxidative stress as well as heat shock protein 90 and NF-κβ inhibitor may account for the differential expression of cerebral hypoxia-inducible factor-1α during inflammation.
Project description:Hepatic steatosis is a very common response to liver injury and often attributed to metabolic disorders. Prior studies have demonstrated the efficacy of a biotechnologically produced oyster mushroom (Pleurotus sajor-caju, PSC) in alleviating hepatic steatosis in obese Zucker rats. This study aims to elucidate molecular events underlying the anti-steatotic effects of PSC.
Project description:In the present study we tested the hypothesis that male and female rat livers respond differently to a change in nutrient availability or to insulin treatment. We compared hepatic gene expression, hepatic glycogen and glucose output, insulin sensitivity and amino acids, using healthy rats. Keywords: Hepatic gene expression, sex-differences Two-condition experiment. Biological replicates: 4 male rat livers from rats on a standard diet and 4 female rat livers from rats on a standard diet. One replicate per array.
Project description:Cohesin extrusion is thought to play a central role in establishing the architecture of mammalian genomes. However, extrusion has not been visualized in vivo, and thus, its functional impact and energetics are unknown. Using ultra-deep Hi-C, we show that loop domains form by a process that requires cohesin ATPases. Once formed, however, loops and compartments are maintained for hours without energy input. Strikingly, without ATP, we observe the emergence of hundreds of CTCF-independent loops that link regulatory DNA. We also identify architectural "stripes" where a loop anchor interacts with entire domains at high frequency. Stripes often tether super-enhancers to cognate promoters, and in B cells, they facilitate Igh transcription and recombination. Stripe anchors represent major hotspots for topoisomerase-mediated lesions, which promote chromosomal translocations and cancer. In plasmacytomas, stripes can deregulate Igh-translocated oncogenes. We propose that higher organisms have coopted cohesin extrusion to enhance transcription and recombination, with implications for tumor development.
Project description:The well-known difference in sensitivity of mice and rats to acetaminophen (APAP) liver injury has been related to differences in the fraction that is bioactivated to the reactive metabolite N-acetyl-p-benzoquinoneimine (NAPQI). Physiologically-based pharmacokinetic modelling was used to identify doses of APAP (300 and 1000 mg/kg in mice and rats, respectively) yielding similar hepatic burdens of NAPQI, to enable the comparison of temporal liver tissue responses under conditions of equivalent chemical insult.
Project description:In the present study we tested the hypothesis that male and female rat livers respond differently to a change in nutrient availability or to insulin treatment. We compared hepatic gene expression, hepatic glycogen and glucose output, insulin sensitivity and amino acids, using healthy rats. Keywords: Hepatic gene expression, sex-differences
Project description:Male rat treated with 17-alpha-Ethinylestradiol for 24 hours. Hepatic gene expression changes in comparison with control, excepient treated rats. Keywords: repeat sample