Project description:We report the role of AIB1D4 in early stage breast cancer progression. Using CRISPR editing, we generated isogeneic cell lines that only express AIB1D4 and not full length AIB1 then extracted RNA for sequencing from cell lines and mamary fat pad xenografts in SCID/Beige mice. Data was aligned to Hg19 with STAR and processed with EdgeR.
Project description:FOXM1 is a key transcription factor regulating cell cycle progression, DNA damage response, and a host of other hallmark cancer features, but the role of the FOXM1 cistrome in driving estrogen receptor-positive (ER+) vs. ER- breast cancer clinical outcomes remains undefined. Chromatin immunoprecipitation sequencing (ChIP-Seq) coupled with RNA sequencing (RNA-Seq) analyses was used to identify FOXM1 target genes in breast cancer cells (MCF-7) where FOXM1 expression was either induced by cell proliferation or repressed by p53 upregulation.
Project description:FOXM1 is a key transcription factor regulating cell cycle progression, DNA damage response, and a host of other hallmark cancer features, but the role of the FOXM1 cistrome in driving estrogen receptor-positive (ER+) vs. ER- breast cancer clinical outcomes remains undefined. Chromatin immunoprecipitation sequencing (ChIP-Seq) coupled with RNA sequencing (RNA-Seq) analyses was used to identify FOXM1 target genes in breast cancer cells (MCF-7) where FOXM1 expression was either induced by cell proliferation or repressed by p53 upregulation.
Project description:FOXM1 is a key transcription factor regulating cell cycle progression, DNA damage response, and a host of other hallmark cancer features, but the role of the FOXM1 cistrome in driving estrogen receptor-positive (ER+) vs. ER- breast cancer clinical outcomes remains undefined.
Project description:FOXM1 is a key transcription factor regulating cell cycle progression, DNA damage response, and a host of other hallmark cancer features, but the role of the FOXM1 cistrome in driving estrogen receptor-positive (ER+) vs. ER- breast cancer clinical outcomes remains undefined.
Project description:To characterize the genome-wide regulatory cistrome of Foxa1 and Foxa2, we performed both Foxa1 and Foxa2 chromatin immunoprecipitation followed by sequencing (ChIP-seq) on freshly dissociated prostate tumor cells at the early stage (2 weeks post tamoxifen administration) and the late stage (6 months post tamoxifen administration) of NEPC progression, respectively.