Project description:Optimization of broiler chicken breast muscle protein accretion is key for the efficient production of poultry meat, whose demand is steadily increasing. In a context where antimicrobial growth promoters use is being restricted, it is important to find alternatives as well as to characterize the effect of immunological stress on broiler chicken growth. Despite of its importance, research on broiler chicken muscle protein dynamics has been mostly limited to the study of mixed protein turnover. The present study aims to characterize the effect of a bacterial challenge and the feed supplementation of a citrus and a cucumber extract on broiler chicken individual breast muscle proteins fractional synthesis rates (FSR) using a recently developed dynamic proteomics pipeline. 21 day-old broiler chickens were administered a single 2H2O dose before being culled at different timepoints. A total of 60 breast muscle protein extracts from five experimental groups (Unchallenged, Challenged, Control Diet, Diet 1 and Diet 2) were analyzed using a DDA proteomics approach. Proteomics data was filtered in order to reliably calculate multiple proteins FSR making use of a newly developed bioinformatics pipeline. Broiler breast muscle proteins FSR uniformly decreased following a bacterial challenge, this change was judged significant for 15 individual proteins, the two major functional clusters identified as well as for mixed breast muscle protein. Citrus or cucumber extract feed supplementation did not show any effect on the breast muscle protein FSR of immunologically challenged broilers. The present study has identified potential predictive markers of breast muscle growth and provided new information on broiler chicken breast muscle protein turnover which could be essential for improving the efficiency of broiler chicken meat production.
Project description:A 30-day nutritional trial in broiler chickens (Ross 308) was conducted to investigate how specific forms of vitamin E (α- and γ-tocopherol) and their combination impact liver gene expression when oxidative susceptibility of the organism is induced by high n-3 polyunsaturated fatty acids (PUFA) intake. Thirty-six one-day-old male broilers were fed a diet enriched with 5 % linseed oil to induce oxidative susceptibility. Beside negative (N) and positive (P) control group, experimental groups were supplemented with either: 67 mg/kg RRR-α-tocopherol (A), 67 mg/kg RRR-γ-tocopherol (G) or with combination of 33.5 mg/kg of each tocopherol (S). Whole chicken genome microarray analysis was performed on liver RNA and selected differentially expressed genes were confirmed by qRT-PCR.
Project description:As an essential micronutrient for animals, vitamin E plays crucial physiological roles in reproduction, antioxidant and immune functions, and lipid metabolism. The objective of this study was to reveal molecular mechanism of vitamin E on intramuscular fat (IMF) deposition through transcriptome sequencing of pectoral muscle in broiler chickens. A total of 240 one-day-old health female chicks were randomly allocated into five dietary treatments with each treatment six replicates. The birds were fed basal diet supplemented with 0 and 100 IU/kg vitamin E in the form of DL-α-tocopheryl acetate, respectively. The body weight, carcass performance and IMF content were measured. Transcriptome profile of pectoral muscle in 35-day-old chickens were sequencing from the control and 100 IU/kg vitamin E treatment. Functional enrichment analyzes of differentially expressed genes (DEGs) based on Gene ontology (GO), KEGG pathway and bio function, and network were performed. Results shown that IMF content of broiler chickens were significantly increased at 12.89% (P < 0.05) between 100 IU/kg vitamin E treatment and control. Transcriptome sequencing results for pectoralis major muscle of 100 IU vitamin E-supplemented and the control groups identified 57 up-regulated and 102 down-regulated DEGs. These DEGs were significantly enriched (FDR corrected P-value < 0.05) in 13 of 236 GO terms involved in muscle development- and lipid metabolism. Pathway functional enrichment analysis revealed that the DEGs were significantly enriched in three signalling pathways (FDR corrected P-value < 0.05). Two of them, MAPK signaling pathway and FoxO signaling pathway, play key roles in muscular and lipid metabolism. It is worth mentioning that 46 DEGs were significantly enriched in 28 skeletal and muscular system development and function categories and 31 DEGs were significantly enriched in 17 lipid metabolism function categories. Moreover, three lipid metabolism and muscular development-related networks of DEGs were also identified. These DEGEs, pathways, function categories and networks identified in this study provide us new insights for the vitamin E regulation of the IMF deposition in broiler chickens.
Project description:Selenium (Se) is an essential cofactor of the antioxidant enzyme glutathione peroxidase beside other functions. The evaluation of optimal selenium supplementation in chicken feed and the subsequent effects on animal health and performance requires comprehensive knowledge of the overall metabolic effects of selenium. Therefore the gene expression was measured in the control group with a standard diet and in the group with a Se supplemented diet (0.5mg Se/kg diet) to determine significantly altered gene expression. The selenium was supplemented in the form of selenized yeast (Se-yeast), which mainly consists of organic Se in the form of L-selenomethionine and L-selenocysteine. The control group received a diet, which contained 70μg of Se / kg diet and the Se-yeast group 620μg of Se / kg diet (analyzed). The one-day old broiler chicks were separated into two groups and received the control or the Se-supplemented diet ad libitum for 35 days. After slaughter the gene expression was determined in the liver of four control and five samples from the Se-yeast group. One sample from the control group did not correspond to the quality requirements and was excluded from the analysis.
Project description:Domestic broiler chickens rapidly accumulate adipose tissue due to intensive genetic selection for rapid growth and are naturally hyperglycemic and insulin resistant, making them an attractive addition to the suite of rodent models used for studies of obesity and type 2 diabetes in humans. Furthermore, chicken adipose tissue is considered as poorly sensitive to insulin and lipolysis is under glucagon control. Excessive fat accumulation is also an economic and environmental concern for the broiler industry due to the loss of feed efficiency and excessive nitrogen wasting, as well as a negative trait for consumers who are increasingly conscious of dietary fat intake. Understanding the control of avian adipose tissue metabolism would both enhance the utility of chicken as a model organism for human obesity and insulin resistance and highlight new approaches to reduce fat deposition in commercial chickens. In the present study we simultaneously characterized the effects of a short term (5 hours) fast or neutralization of insulin action (5 hours) on adipose tissue of young (16-17 day-old), fed commercial broiler chickens.
Project description:Cyberlindnera jadinii yeast is a potential sustainable novel feed ingredient for aquaculture industries. Yeasts contain bio-active components and proteins such as beta-glucans, mannans, nucleic acids and proteins that can enhance fish immunity against the disease. In our study, we focused on the characterization of intestinal immunoregulatory pathways in zebrafish (Danio rerio) by quantifying the intestine proteins with isobaric tags for relative and absolute quantitation (iTRAQ) and 2D LC-MS/MS approach. Zebrafish were fed either a control diet (C) or a diet supplemented with autolyzed C. jadinii (ACJ). The KEGG pathways analysis revealed that compared with the control diet, the ACJ yeast diet induced an increased abundance of proteins related to arginine and proline metabolism, phagosome, C-lectin receptor signalling pathway, ribosome pathway and PPAR signalling pathway, which can modulate and enhance the innate response of zebrafish. Moreover, fish fed ACJ yeast diet also showed decreased abundance of proteins associated with inflammatory pathways including apoptosis, necroptosis and ferroptosis pathways. These findings support a mobilization of the innate immune response and a control of inflammatory-related pathways in the intestine of zebrafish. Our findings in the well annotated proteome of zebrafish enabled a detailed investigation of intestinal responses and provide insight into the health-beneficial effects of the yeast species C. jadinii relevant for aquaculture species.
Project description:Identifying genes that show differential cardiac expression by comparing Atlantic salmon fed with a tetradecylthioacetic acid (TTA) supplemented diet to those fed a control diet for two sampling time points.
Project description:Transcriptomics of hypothalamic responses of broiler chickens fed L-citrulline supplemented diets under different ambient temperatures
Project description:Transcriptional profiling of liver tissue from rats fed with standard diet with 1% cholesterol (control diet) and the same diet supplemented with 5% Geneva (test sample1) or 5% Hayward (test sample2) kiwifruit lyophylisate. The goal was to determine the anti-atherogenic effect of kiwi fruit supplementation and their impact on gene expression preventing hepatic steatosis