Project description:To identify CdbA binding sites on Myxococcus xanthus genome in vivo we performed ChIP-seq, using a polyclonal anti-FLAG antibody and a strain endogenously expressing CdbA_3xFLAG. A WT DK1622 strain was used a negative control and a strain endogenously expressing ParB_3xFLAG was used as positive control.
Project description:In response to starvation Myxococcus xanthus initiates a developmental program that culminates in the formation of fruiting bodies inside which the rod-shaped cells differentiate to spores. Fruiting body formation depends on intercellular communication and two intercellular signals are known, the A-signal and the C-signal. Five genes have been identified which are required for A-signal synthesis. To begin to understand the function of the genes required for A-signal synthesis, we have analysed gene expression in the asgA and the asgB mutant. Keywords: Vegetative cells of WT (DK1622) and AsgA mutant (DK5057) and AsgB mutant (DK4398) 3 biological replicates each; normalized ratios to vegetative cells of DK1622 (wt) Cy5
Project description:In Myxococcus xanthus 55% of the more than 250 two-component signal transduction systems (TCS) genes are orphan. We hypothesized that the histidine kinase SgmT and the response regulator DigR, which comprises a DNA binding domain of the HTH_Xer type, function together to regulate gene expression. We performed genome-wide expression profiling experiments to determine wether the same set of genes are differentially expressed in the ΔdigR and ΔsgmT mutants. 3 biological replicates each; normalized ratios to vegetative cells of DK1622 (wt) Cy5
Project description:In response to starvation Myxococcus xanthus initiates a developmental program that culminates in the formation of fruiting bodies inside which the rod-shaped cells differentiate to spores. Fruiting body formation depends on intercellular communication and two intercellular signals are known, the A-signal and the C-signal. Five genes have been identified which are required for A-signal synthesis. To begin to understand the function of the genes required for A-signal synthesis, we have analysed gene expression in the asgA and the asgB mutant. Keywords: Vegetative cells of WT (DK1622) and AsgA mutant (DK5057) and AsgB mutant (DK4398)
2012-05-18 | GSE18029 | GEO
Project description:Re-sequence of the engineered Myxococcus xanthus strain renovated from M. xanthus DK1622
Project description:Myxococcus xanthus is a gram negative rod-shaped delta proteobacterium that differentiates into environmentally resistant spores in response to starvation. Little is known about the sporulation mechanism in part because sporulation occurs in a subpopulation of cells undergoing a lenghtly complex multicellular developmental program. This developmental program requires a solid surface, motility, a minimum population density and a sophisticated network of inter and intra-cellular signals which direct some cells first to aggregate into multicellular fruiting bodies and then to sporulate exclusively within these fruiting bodies. However, it has previously been demonstrated that synchronous conversion of vegetative cells into myxospores can also be triggered in nutrient-rich liquid medium by addition of glycerol to 0.5 M. Here, we took advantage of the glycerol-induced sporulation process to gain information about the core M. xanthus sprorulation mechanism. We determined changes in the global gene expression at 0.5, 1, 2, and 4 hours after glycerol induction compared to vegetative cells (wild-type DK1622). The expression of nearly 1,500 genes was found to be significantly altered at least two-fold within four hours of glycerol-induced development. Most of the known core sporulation marker genes were up-regulated, whereas most genes required for proper aggregation and fruiting body formation were not significantly regulated. Keywords: Time course of glycerol-induced (0.5 M final conc.) development with 4 time points referenced to vegetative cells 3 biological replicates each; normalized ratios to vegetative cells of DK1622 (wt) Cy3