Project description:Serine Peptidase Inhibitor, Kazal type 1 (SPINK1) overexpression represents the second-largest prostate cancer (PCa) subtype associated with increased risk of biochemical recurrence and poor prognosis. To determine the pathways regulated by SPINK1 in 22RV1 prostate cancer cells, we performed shRNA mediated knockdown of SPINK1 using lentiviral constructs. Scrambled shRNA was used as a control. pGIPZ constructs against SPINK1 (shSPINK1-1, shSPINK1-2, shSPINK1-3) and control shScrambled construct were purchased from Dharmacon.
Project description:HNF4G is a gastrointestinal tissue enriched master transcriptional regulator seen overexpressed in a subset of prostate cancer. Here we have mapped binding sites of HNF4G, AR, Foxa1, H3K4me1, H3K27acetyl upon knockdown and overexpression of HNF4G in in 22Rv1 and LNCaP cells respectively
Project description:Here we performed transcriptional profiling of the prostate cancer cell lines LNCaP and 22Rv1 comparing non-targeting siRNA treatment versus siRNAs targeting SWI/SNF complex proteins (SMARCA2, SMARCA4, and SMARCB1). Goal was to determine the effect of SWI/SNF knockdown on gene expression in prostate cancer. Two-condition experiment: non-targeting siRNA versus SWI/SNF-siRNA treated cells. Three SWI/SNF proteins were targeted: SMARCA2, SMARCA4, and SMARB1. Biological replicates: 1 control replicate, 2 treatment replicates per SWI/SNF protein. Technical replicates: 1 replicate per SWI/SNF protein. Cell lines: 22Rv1 and LNCaP.
Project description:ETS gene fusions have been characterized in a majority of prostate cancers, however key molecular alterations in ETS negative cancers are unclear. Here we used an outlier meta-analysis (meta-COPA) to identify SPINK1 outlier-expression exclusively in a subset of ETS rearrangement negative cancers (~10% of total cases). We validated the mutual exclusivity of SPINK1 expression and ETS fusion status, demonstrated that SPINK1 outlier-expression can be detected non-invasively in urine and observed that SPINK1 outlier-expression is an independent predictor of biochemical recurrence after resection. We identified the aggressive 22RV1 cell line as a SPINK1 outlier-expression model, and demonstrate that SPINK1 knockdown in 22RV1 attenuates invasion, suggesting a functional role in ETS rearrangement negative prostate cancers. Keywords: Genetic Modification 22RV1 cells were infected with non-targeting siRNA or siRNA against SPINK1. For reported hybridizations, the reference channel is 22RV1 cells infected with non-targeting siRNA. Duplicate hybridizations were performed with duplicate dye flips, for a total of four arrays. Over and under-expressed signatures were generated by filtering to include only features with significant differential expression (PValueLogRatio < 0.01) in all hybridizations and Cy5/Cy3 ratios > or < 1 in all hybridizations.
Project description:Here we performed transcriptional profiling of the prostate cancer cell lines LNCaP and 22Rv1 comparing non-targeting siRNA treatment versus siRNAs targeting SWI/SNF complex proteins (SMARCA2, SMARCA4, and SMARCB1). Goal was to determine the effect of SWI/SNF knockdown on gene expression in prostate cancer.
Project description:FoxA1 has been shown critical for prostate development and prostate-specific gene expression regulation. In addition to its well-established role as an AR pioneering factor,several studies have recently revealed significant AR binding events in prostate cancer cells with FoxA1 knockdown. Furthermore, the role of FoxA1 itself in prostate cancer has not been carefully examined. Thus, it is important to understand the role of FoxA1 in prostate cancer and how it interacts with AR signaling. To address these questions, we generated engineered LNCaP cells with FoxA1 knockdown using shRNA or siRNA, 22RV1 cells with stable FoxA1 knockdown and PC3M cells with FoxA1 stable overexpression. We performed microarray analysis of these cells. We performed microarray analysis on LNCaP cells with FoxA1 knockdown using shRNA or siRNA, 22RV1 cells with stable FoxA1 knockdown and PC3M cells with FoxA1 stable overexpression
Project description:In this study, we aimed to characterize the suppressive role of NCOA6 in prostate cancer development, uncover the underlying molecular mechanism, and identify potential therapeutic targets for treating NCOA6 loss-induced prostate cancer. Gene expression microarray analysis and RNA-Seq analysis were performed to identify differentially expressed genes influenced by NCOA6 in 22Rv1 human prostate cancer cells and mouse prostate tumors, respectively. Pathway enrichment analysis and gene set enrichment analysis were performed to identify NCOA6-regulated signaling pathways, particually the cancer-associated pathways. ChIP-Seq analysis was further performed to identify NCOA6-associated genomic regions in 22Rv1 cells. The potential direct target genes of NCOA6 were identified by combined analysis of the gene expression profiling data and ChIP-Seq data. Finally, we identified EGFR as one of the 264 NCOA6 direct target genes and deomonstrated that NCOA6 suppressed prostate cancer progression by preventing EGFR overexpression.