Project description:Arrays of regularly spaced nucleosomes dominate chromatin and are often phased, i.e., aligned at reference sites like active promoters. How distances between nucleosomes and distances between phasing sites and nucleosomes are determined remained unclear, specifically, the role of ATP dependent chromatin remodelers in it. Here, we used a genome-wide reconstitution system to probe how yeast remodelers generate phased nucleosome arrays. We find that remodelers bear a structural element named the ‘ruler’ that sets nucleosome spacing, in the order Chd1 < ISW1a < ISW2 < INO80. Structure-based mutagenesis confirmed the functional significance of the ruler element in INO80. Differences in the ruler elements of different remodelers explain the observed nucleosome array features. More generally, we propose that remodelers use their rulers to regulate the direction of nucleosome sliding in response to nucleosome density and environment, leading to nucleosome positioning relative to other nucleosomes, DNA bound factors or DNA sequence elements.
Project description:Arrays of regularly spaced nucleosomes dominate chromatin and are often phased by alignment to reference sites like active promoters. How the distances between nucleosomes (spacing), and between phasing sites and nucleosomes are determined remains unclear, and specifically, how ATP-dependent chromatin remodelers impact these features. Here, we used genome-wide reconstitution to probe how Saccharomyces cerevisiae ATP-dependent remodelers generate phased arrays of regularly spaced nucleosomes. We find that remodelers bear a functional element named the 'ruler' that determines spacing and phasing in a remodeler-specific way. We use structure-based mutagenesis to identify and tune the ruler element residing in the Nhp10 and Arp8 modules of the INO80 remodeler complex. Generally, we propose that a remodeler ruler regulates nucleosome sliding direction bias in response to (epi)genetic information. This finally conceptualizes how remodeler-mediated nucleosome dynamics determine stable steady-state nucleosome positioning relative to other nucleosomes, DNA bound factors, DNA ends and DNA sequence elements.
Project description:We addressed the roles of three nucleosome spacing enzymes (ISW1, ISW2 and CHD1) in specifying chromatin organization in S. cerevisiae.
Project description:We addressed the roles of three nucleosome spacing enzymes (ISW1, ISW2 and CHD1) in specifying chromatin organization in S. cerevisiae. Comparison of budding yeast nucleosome positions obtained using micrococcal nuclease digestion followed by paired-end sequencing (MNase-seq). We sequenced nucleosomes from isogenic strains with the isw1Î, isw2Î or chd1Î mutations in all combinations. We measured gene activity by ChIP-seq for the Rpb3 subunit of RNA polymerase II for some of these mutants.
Project description:Eukaryotic chromosomes are composed of chromatin, in which regularly spaced nucleosomes containing ~147 bp of DNA are separated by linker DNA. Most eukaryotic cells have a characteristic average nucleosome spacing of ~190 bp, corresponding to a ~45 bp linker. However, cortical neurons have a shorter average spacing of ~165 bp. The significance of this atypical global chromatin organization is unclear. We have compared the chromatin structures of purified mouse dorsal root ganglia (DRG) neurons, cortical oligodendrocyte precursor cells (OPCs) and cortical astrocytes. DRG neurons have short average spacing (~165 bp), whereas OPCs (~182 bp) and astrocytes (~183 bp) have longer spacing. We measured nucleosome positions by MNase-seq and gene expression by RNA-seq. Most genes in all three cell types have a promoter chromatin organization typical of active genes: a nucleosome-depleted region at the promoter flanked by regularly spaced nucleosomes phased relative to the transcription start site. In DRG neurons, the spacing of phased nucleosomes downstream of promoters (~178 bp) is longer than expected from the genomic average, whereas phased nucleosome spacing in OPCs and astrocytes is similar to the global average (~183 bp). Thus, the atypical nucleosome spacing of neuronal chromatin does not extend to promoter-proximal regions.
Project description:Eukaryotic chromosomes are composed of chromatin, in which regularly spaced nucleosomes containing ~147 bp of DNA are separated by linker DNA. Most eukaryotic cells have a characteristic average nucleosome spacing of ~190 bp, corresponding to a ~45 bp linker. However, cortical neurons have a shorter average spacing of ~165 bp. The significance of this atypical global chromatin organization is unclear. We have compared the chromatin structures of purified mouse dorsal root ganglia (DRG) neurons, cortical oligodendrocyte precursor cells (OPCs) and cortical astrocytes. DRG neurons have short average spacing (~165 bp), whereas OPCs (~182 bp) and astrocytes (~183 bp) have longer spacing. We measured nucleosome positions by MNase-seq and gene expression by RNA-seq. Most genes in all three cell types have a promoter chromatin organization typical of active genes: a nucleosome-depleted region at the promoter flanked by regularly spaced nucleosomes phased relative to the transcription start site. In DRG neurons, the spacing of phased nucleosomes downstream of promoters (~178 bp) is longer than expected from the genomic average, whereas phased nucleosome spacing in OPCs and astrocytes is similar to the global average (~183 bp). Thus, the atypical nucleosome spacing of neuronal chromatin does not extend to promoter-proximal regions.
Project description:Genetic models suggested that SMARCA5 was required for DNA templated events including transcription, DNA replication and DNA repair. We engineered a degron tag into the endogenous alleles of SMARCA5, a catalytic component of the imitation switch (ISWI) complexes, in three different human cell lines to define the effects of rapid degradation of this key regulator. Degradation of SMARCA5 was associated with a rapid increase in global nucleosome repeat length, which may allow greater chromatin compaction. However, there were few changes in nascent transcription within the first 6hr of degradation. Nevertheless, we demonstrated a requirement for SMARCA5 to control nucleosome repeat length at G1/S and during the S phase. SMARCA5 co-localized with CTCF and H2A.Z, and we found a rapid loss of CTCF DNA binding and disruption of nucleosomal phasing around CTCF binding sites. This spatiotemporal analysis indicates that SMARCA5 is continuously required for maintaining nucleosomal spacing.
Project description:Genetic models suggested that SMARCA5 was required for DNA templated events including transcription, DNA replication and DNA repair. We engineered a degron tag into the endogenous alleles of SMARCA5, a catalytic component of the imitation switch (ISWI) complexes, in three different human cell lines to define the effects of rapid degradation of this key regulator. Degradation of SMARCA5 was associated with a rapid increase in global nucleosome repeat length, which may allow greater chromatin compaction. However, there were few changes in nascent transcription within the first 6hr of degradation. Nevertheless, we demonstrated a requirement for SMARCA5 to control nucleosome repeat length at G1/S and during the S phase. SMARCA5 co-localized with CTCF and H2A.Z, and we found a rapid loss of CTCF DNA binding and disruption of nucleosomal phasing around CTCF binding sites. This spatiotemporal analysis indicates that SMARCA5 is continuously required for maintaining nucleosomal spacing.
Project description:Genetic models suggested that SMARCA5 was required for DNA templated events including transcription, DNA replication and DNA repair. We engineered a degron tag into the endogenous alleles of SMARCA5, a catalytic component of the imitation switch (ISWI) complexes, in three different human cell lines to define the effects of rapid degradation of this key regulator. Degradation of SMARCA5 was associated with a rapid increase in global nucleosome repeat length, which may allow greater chromatin compaction. However, there were few changes in nascent transcription within the first 6hr of degradation. Nevertheless, we demonstrated a requirement for SMARCA5 to control nucleosome repeat length at G1/S and during the S phase. SMARCA5 co-localized with CTCF and H2A.Z, and we found a rapid loss of CTCF DNA binding and disruption of nucleosomal phasing around CTCF binding sites. This spatiotemporal analysis indicates that SMARCA5 is continuously required for maintaining nucleosomal spacing.
Project description:Genetic models suggested that SMARCA5 was required for DNA templated events including transcription, DNA replication and DNA repair. We engineered a degron tag into the endogenous alleles of SMARCA5, a catalytic component of the imitation switch (ISWI) complexes, in three different human cell lines to define the effects of rapid degradation of this key regulator. Degradation of SMARCA5 was associated with a rapid increase in global nucleosome repeat length, which may allow greater chromatin compaction. However, there were few changes in nascent transcription within the first 6hr of degradation. Nevertheless, we demonstrated a requirement for SMARCA5 to control nucleosome repeat length at G1/S and during the S phase. SMARCA5 co-localized with CTCF and H2A.Z, and we found a rapid loss of CTCF DNA binding and disruption of nucleosomal phasing around CTCF binding sites. This spatiotemporal analysis indicates that SMARCA5 is continuously required for maintaining nucleosomal spacing.