Project description:Innate lymphoid cells are a heterogeneous subset of lymphocytes deeply implicated in the innate immune responses to different pathogens, in lymphoid organogenesis and in the maintenance of tissue homeostasis. Group 3 innate lymphoid cells (ILC3) have been detected in human decidua, where they play a role in the early inflammatory phase favoring implantation and tissue remodeling as well as in the subsequent regulatory phase preventing fetal rejection and supporting neoangiogenesis. A balance between inflammation and immune tolerance is required to maintain pregnancy, thus maternal immune system must be controlled by finely tuned mechanisms. MicroRNAs (miRNAs) are small non-coding RNAs with important regulatory roles in immune cells, but their function in decidual ILC3 (dILC3) and decidual NK (dNK) cells is still undefined. Here, we examined the miRNome by microarray in these cells during the first trimester of pregnancy and compared with miRNA profiles of peripheral blood NK (pbNK) cells from pregnant women. We show that distinct miRNA profiles could clearly distinguish dILC3 from NK cells. Correlation analyses revealed that dNK and pbNK miRNome profiles are more similar to each other as compared to dILC3. Overall, our data identified specific miRNA signatures distinguishing dILC3, dNK and pbNK cells.
Project description:Innate lymphoid cells (ILCs) are a heterogeneous subset of lymphocytes deeply implicated in the innate immune responses to different pathogens, in lymphoid organogenesis and in the maintenance of tissue homeostasis. Group 3 innate lymphoid cells (ILC3) have been detected in human decidua, where they play a role in the early inflammatory phase favoring implantation and tissue remodeling as well as in the subsequent regulatory phase preventing fetal rejection and supporting neoangiogenesis. A balance between inflammation and immune tolerance is required to maintain pregnancy, thus maternal immune system must be controlled by finely tuned mechanisms. microRNAs (miRNAs) are small non-coding RNAs with important regulatory roles in immune cells, but their function in decidual ILC3 (dILC3) and in decidual NK (dNK) cells is still undefined. Here, we examined the miRNome by microarray in these cells during the first trimester of pregnancy and compared with miRNA profiles of peripheral blood NK (pbNK) cells from pregnant women. We show that distinct miRNA profiles could clearly distinguish dILC3 from NK cells. Correlation analyses revealed that dNK and pbNK miRNome profiles are more similar to each other as compared to dILC3. In particular, we identified 302 and 279 mature miRNAs differentially expressed in dILC3 as compared to dNK and pbNK, respectively. The expression of miR-574-3p and the miR-99b/let-7e/miR-125a miRNA cluster resulted the most increased in dILC3. Remarkably, gene ontology analysis and pathway enrichments of miRNA targets revealed an involvement of these miRNAs in the promotion of anti-inflammatory responses. In agreement to this finding, we also found a higher expression of the anti-inflammatory miR-146a-5p in dILC3 with respect to NK cells. Overall, our data identified specific miRNA signatures distinguishing dILC3, dNK, and pbNK cells. Our data suggest the existence of a tight epigenetic control mediated by miRNAs in dILC3, potentially acting as a brake to prevent exaggerated inflammatory responses and to maintain the immune homeostasis in the early phases of pregnancy.
Project description:We identified a new type of bone marrow progenitors termed early innate lymphoid cell progenitor (EILP) using TCF-1 GFP reporter mice. We compared the transcriptomes of early innate lymphoid cell progenitors (EILP) with other early progenitors, including HSC, LMPP, CMP, CLP, ETP and DN3.
Project description:Innate lymphoid cells (ILC) in the small intestine govern immune homeostasis and protect the host against gut pathogens. While distinct cell-intrinsic signals have been identified that determine ILC development and differentiation, it has remained unclear which cell population regulates ILC sustenance. Using unbiased single cell RNA transcriptomic analysis of intestinal fibroblasts, we have identified a specialized Ccl19-expressing fibroblastic reticular cell (FRC) population that underpins solitary intestinal lymphoid tissue (SILT) structures including cryptopatches and isolated lymphoid follicles. Conditional ablation of lymphotoxin-β receptor (LTβR) signalling in SILT FRC impeded the maturation of isolated lymphoid follicles and blocked ILC maintenance through the downregulation of IL-7, consequently resulting in the elevated susceptibility to bacterial infection. Moreover, specific Ltbr ablation in FRC during adulthood revealed that constant LTβR-dependent FRC-ILC interaction is required to maintain SILT structures and ILC populations. Taken together, our study unveils a critical intestinal FRC niche that secures protective gut immunity.
Project description:Single cell RNA-sequencing of human tonsil Innate lymphoid cells (ILCs) from three independent tonsil donors. Sequencing libraries were prepared from FACS sorted individual ILCs with the Smart-Seq2 protocol (Picelli et al. Nature Methods 2013)
Project description:Natural Killer (NK) cells at different developmental stages (common lymphoid progenitor (CLP), innate lymphoid cell progenitors (ILCP), and refined NK progenitor (NKP)) were collected from Vav1+iCre FOXO1,3flox/flox mice (C57BL/6 background). Total RNA was harvested and sequenced with a strand-specific paired-end RNA-seq protocol.