Project description:The helminth Acanthocheilonema viteae serves as model organism for research on parasitic filarial nematodes. Total RNA secreted or excreted by 1500 adult female and male A. viteae over 3 weeks was isolated from culture media previously processed by differential ultracentrifugation, and subjected to miRNA sequencing.
Project description:microRNAs (miRNAs) are an abundant class of non-coding RNA species with important regulatory roles in gene expression at the posttranscriptional level. The helminth Acanthocheilonema viteae serves as model organism for research on parasitic filarial nematodes. Total RNA secreted or excreted in vitro by 1500 adult female and male A. viteae over 3 weeks was isolated from culture media previously processed by differential ultracentrifugation. miRNA sequencing revealed the presence of 360 unique miRNA candidates released by adult A. viteae in vitro. Among them, 74 high-confidence unique miRNAs, as well as several potential novel miRNA candidates were discovered. A large proportion of the sequenced miRNA candidates appeared differentially expressed between the male and female samples based on normalized copy count. The presence of extracellular vesicles, often rich in miRNAs, could not be confirmed unambiguously by transmission electron microscopy.
Project description:Chitinases of pathogens have been proposed as potential targets of vaccines or specific inhibitors. We studied the genomic organization, transcript levels, developmental expression, and biological function of chitinases in the rodent filarial nematode Acanthocheilonema viteae, a model organism for human-pathogenic filarial worms. Characterization of nine genomic clones from an A. viteae phage library and Southern blot experiments revealed the existence of three different chitinase genes, two of which could theoretically yield functional transcripts. The deduced proteins of these genes had the common modular organization of family 18 chitinases. Northern blot experiments and rapid amplification of cDNA ends-PCR with adult worms and larval stages showed that only one gene is expressed, with high variation in transcript levels, as determined by real-time PCR. Chitinase transcript levels were lowest in the late male stage 4 larva (L4) and peaked in the stage 3 larva (L3), which was corroborated by Western blotting. RNA interference (RNAi) experiments showed that treatment of L3 and adult female worms with double-stranded RNA of chitinase inhibited molting of L3 worms and hatching of microfilariae. RNAi also led to the death of 50% of female worms, revealing the essential role of chitinase in the life cycle of filarial nematodes.
Project description:ES-62 is the major secreted product of the parasitic filarial nematode Acanthocheilonema viteae and has potent anti-inflammatory activities as a consequence of posttranslational decoration by phosphorylcholine (PC). Previously, we showed that ES-62's PC was attached to N-linked glycans, and using fast atom bombardment mass spectrometry, we characterized the structure of the glycans. However, it was unknown at this time which of ES-62's four potential N-glycosylation sites carries the PC-modified glycans. In the present study, we now employ more advanced analytical tools-nano-flow liquid chromatography with high-definition electrospray mass spectrometry-to show that PC-modified glycans are found at all four potential N-glycosylation sites. Also, our earlier studies showed that up to two PC groups were detected per glycan, and we are now able to characterize N-glycans with up to five PC groups. The number per glycan varies in three of the four glycosylation sites, and in addition, for the first time, we have detected PC on the N-glycan chitobiose core in addition to terminal GlcNAc. Nevertheless, the majority of PC is detected on terminal GlcNAc, enabling it to interact with the cells and molecules of the immune system. Such expression may explain the potent immunomodulatory effects of a molecule that is considered to have significant therapeutic potential in the treatment of certain human allergic and autoimmune conditions.
Project description:We sequenced total RNA from Dirofilaria immitis in order to generate the first tissue-specific gene expression profile of a filarial nematode and its Wolbachia endosymbiont.