Project description:Breast cancer cells and two metaplastic breast cancer cell lines were used: a widely available, HS578T, and a novel line isolated from a metaplastic breast cancer tumor, BAS. Doxorubicin and paclitaxel resistant derivatives of these metaplastic lines were generated and miR profiling performed.
Project description:Two metaplastic breast cancer cell lines were used: a widely available, HS578T, and a novel line isolated from a metaplastic breast cancer tumor, BAS. Doxorubicin and paclitaxel resistant derivatives of these lines were generated and transcriptome profiling performed.
Project description:aCGH of human melanoma cell lines comparing parental (drug sensitve) vs isogenic drug resistant-derived subline Two condition experiment: two BRAF-V600E mutant cell lines (drug sensitive - parental baseline) vs two derived sublines after chronic exposure to the MEK inhibitor trametinib (drug resistant) are compared
Project description:Analysis of Drug transports as a mechanism of resistance to aurora kinase inhibition Parental and Taxol-resistant cell lines are compared for gene expression profile differences.
Project description:Analysis of Drug transports as a mechanism of resistance to aurora kinase inhibition Parental and Taxol-resistant cell lines are compared for gene expression profile differences. 2 samples, fluor reversed
Project description:Metaplastic breast carcinoma (MpBC) typically consists of carcinoma of no special type (NST) with various metaplastic components. The intracase transcriptomic alterations between metaplastic components and paired NST components, which are critical for understanding the pathogenesis underlying the metaplastic processes, remain unclear. Herein, 59 NST components and paired metaplastic components (spindle sarcomatous [SPS], matrix-producing, rhabdomyoid [RHA], and squamous carcinomatous [SQC] components) were microdissected from specimens obtained from 27 patients with MpBC for gene expression profiling. Hierarchical clustering and principal component analysis revealed a heterogeneous gene expression profile (GEP) corresponding to the NST components, but the GEP of metaplastic components exhibited subtype dependence. Compared with the paired NST components, the SPS components demonstrated the upregulation of genes related to stem cells and epithelial–mesenchymal transition, and displayed enrichment in claudin-low and macrophage signatures. Despite certain overlap in the enriched functions and signatures between the RHA and SPS components, the specific differentially expressed genes differed. We observed the RHA-specific upregulation of genes associated with vascular endothelial growth factor signaling. The chondroid matrix-producing components demonstrated the upregulation of hypoxia-related genes and the downregulation of the immune-related MHC2 signature and the TIGIT gene. In the SQC components, TGF-β and genes associated with cell adhesion were upregulated. The differentially expressed genes among metaplastic components in the 22 MpBC cases with one or predominantly one metaplastic component clustered paired NST samples into clusters with correlation with their associated metaplastic types. These genes could be used to separate the 31 metaplastic components according to respective metaplastic types with an accuracy of 74.2%, suggesting that intrinsic signatures of NST may determine paired metaplastic type. The EMT activity and stem cell traits in the NST components were correlated with specimens displaying lymph node metastasis. In summary, we presented the distinct transcriptomic alterations underlying metaplasia into specific metaplastic components in MpBCs.