Project description:In order to understand heterogeneity of MCH neurons, by using MCH-Cre dependent ZsGreen (fl/fl) reporter mice, we isolated nuclear from 16 hypothalami of 16 mice at the age of 16-18weeks. Through flow cytometry, we were able to distinguish ZsGreen positive nuclei, and collected puried MCH nuclei in suspension. Those nuclei suspension were subjected to single cell sequence by 10x™ GemCode™ Technology for further single nuleus mRNA analysis and unravel subclusters of MCH neurons
Project description:Orexin/hypocretin receptor type 2 (Ox2R), which is widely expressed in the brain, receives orexin signals and modulates sleep and metabolism. Ox2R selective agonists are currently under clinical trials for narcolepsy treatment. Nevertheless, it remains unclear whether Ox2R exerts an inhibitory effect via Gi proteins in addition to an excitatory effect via Gq proteins. Here, we focused on Ox2R expression and function in MCH neurons, which have opposite roles to orexin neurons in sleep and metabolism regulation. Ox2R-expressing MCH neurons showed heterogeneity of RNA expression, and orexin B application in brain slices induced both excitatory and inhibitory responses in distinct MCH neuron populations. Ox2R inactivation in MCH neurons reduced transitions from NREM to REM sleep and impaired insulin sensitivity with hyperphagia. In conclusion, Ox2R mediates excitatory and inhibitory responses in MCH neuron subpopulations in vivo, which might regulate sleep and metabolism.
Project description:In Alzheimer’s disease (AD), pathophysiological changes in the hippocampus cause deficits in episodic memory formation, leading to cognitive impairment. Hippocampal hyperactivity and decreased sleep quality are associated with early AD, but their basis is poorly understood. We find that homeostatic mechanisms transiently counteract increased excitatory drive of hippocampal CA1 neurons in AppNL-G-F mice, but fail to stabilize it at control levels. Spatial transcriptomics (ST) analysis identifies the Pmch gene encoding Melanin-Concentrating Hormone (MCH) as part of the adaptive response in AppNL-G-F mice. Hypothalamic MCH peptide is produced in sleep-active lateral hypothalamic neurons that project to CA1 and modulate memory. We show that MCH downregulates synaptic transmission and modulates firing rate homeostasis in hippocampal neurons. Moreover, MCH reverses the increased excitatory drive of CA1 neurons in AppNL-G-F mice. Consistent with our finding that a reduced fraction of MCH-neurons is active in AppNL-G-F mice, these animals spend less time in rapid eye movement (REM) sleep. In addition, MCH-axons projecting to CA1 become progressively impaired in both AppNL-G-F mice and AD patients. Our findings identify the MCH-system as vulnerable in early AD and suggest that impaired MCH-system function contributes to aberrant excitatory drive and sleep defects, which can compromise hippocampal-dependent functions.
Project description:The postnatal neurodevelopmental disorder Rett syndrome (RTT) is caused by mutations in the gene encoding Methyl-CpG-binding Protein 2 (MeCP2). Despite decades of research, it remains unclear how MeCP2 actually regulates transcription or why RTT features appear only 6-18 months after birth. We examined MeCP2 binding to methylated cytosine in the CH context (mCH, where H = A, C, or T) in the adult mouse brain and found that MeCP2 binds these mCH sites, influencing nucleosome positioning and transcription. Strikingly, this pattern is unique to the mature nervous system, as it requires the increase in mCH after birth to reveal differences in MeCP2 binding to mCG, mCH, and non-methylated DNA elements. This study provides insight into the molecular mechanism governing MeCP2 targeting and how this targeting might contribute to the delayed onset of RTT symptoms. MeCP2 ChIP-Seq were conducted from ~ 7-week-old hypothalamus tissues from Mecp2-/y; MECP2-EGFP mice.
Project description:The postnatal neurodevelopmental disorder Rett syndrome (RTT) is caused by mutations in the gene encoding Methyl-CpG-binding Protein 2 (MeCP2). Despite decades of research, it remains unclear how MeCP2 actually regulates transcription or why RTT features appear only 6-18 months after birth. We examined MeCP2 binding to methylated cytosine in the CH context (mCH, where H = A, C, or T) in the adult mouse brain and found that MeCP2 binds these mCH sites, influencing nucleosome positioning and transcription. Strikingly, this pattern is unique to the mature nervous system, as it requires the increase in mCH after birth to reveal differences in MeCP2 binding to mCG, mCH, and non-methylated DNA elements. This study provides insight into the molecular mechanism governing MeCP2 targeting and how this targeting might contribute to the delayed onset of RTT symptoms. Mnase-Seq were conducted from 7-week-old hypothalamus from MeCP2 knockout mice and their age and genetic background matched wild types control mice.
Project description:The postnatal neurodevelopmental disorder Rett syndrome (RTT) is caused by mutations in the gene encoding Methyl-CpG-binding Protein 2 (MeCP2). Despite decades of research, it remains unclear how MeCP2 actually regulates transcription or why RTT features appear only 6-18 months after birth. We examined MeCP2 binding to methylated cytosine in the CH context (mCH, where H = A, C, or T) in the adult mouse brain and found that MeCP2 binds these mCH sites, influencing nucleosome positioning and transcription. Strikingly, this pattern is unique to the mature nervous system, as it requires the increase in mCH after birth to reveal differences in MeCP2 binding to mCG, mCH, and non-methylated DNA elements. This study provides insight into the molecular mechanism governing MeCP2 targeting and how this targeting might contribute to the delayed onset of RTT symptoms. mRNA-Seq were conducted from 7-week-old hypothalamus from MeCP2 knockout mice and their age and genetic background matched wild types control mice. Additonal mRNA-Seq were conducted from 7-week-old hypothalamus from MeCP2 transgenic mice and their age and genetic background matched wild types control mice.
Project description:The postnatal neurodevelopmental disorder Rett syndrome (RTT) is caused by mutations in the gene encoding Methyl-CpG-binding Protein 2 (MeCP2). Despite decades of research, it remains unclear how MeCP2 actually regulates transcription or why RTT features appear only 6-18 months after birth. We examined MeCP2 binding to methylated cytosine in the CH context (mCH, where H = A, C, or T) in the adult mouse brain and found that MeCP2 binds these mCH sites, influencing nucleosome positioning and transcription. Strikingly, this pattern is unique to the mature nervous system, as it requires the increase in mCH after birth to reveal differences in MeCP2 binding to mCG, mCH, and non-methylated DNA elements. This study provides insight into the molecular mechanism governing MeCP2 targeting and how this targeting might contribute to the delayed onset of RTT symptoms.
Project description:The postnatal neurodevelopmental disorder Rett syndrome (RTT) is caused by mutations in the gene encoding Methyl-CpG-binding Protein 2 (MeCP2). Despite decades of research, it remains unclear how MeCP2 actually regulates transcription or why RTT features appear only 6-18 months after birth. We examined MeCP2 binding to methylated cytosine in the CH context (mCH, where H = A, C, or T) in the adult mouse brain and found that MeCP2 binds these mCH sites, influencing nucleosome positioning and transcription. Strikingly, this pattern is unique to the mature nervous system, as it requires the increase in mCH after birth to reveal differences in MeCP2 binding to mCG, mCH, and non-methylated DNA elements. This study provides insight into the molecular mechanism governing MeCP2 targeting and how this targeting might contribute to the delayed onset of RTT symptoms.