Project description:We used single-cell RT-PCR to analyze the EMT program of disseminated single cells acquired from epithelial ovarian cancer (EOC) ascites.
Project description:We used single-cell RT-PCR to analyze the cellular components and the EMT program of disseminated tumor cell clusters acquired from epithelial ovarian cancer (EOC) ascites.
Project description:To understand the cellular diversity within malignant ascites, we profiled ~11,000 single cells from 22 samples by Smartseq2 and by 10x.
Project description:Ovarian cancer patients are generally diagnosed at stage III/IV, when ascites is common. The volume of ascites positively correlates with the extent of metastasis and negatively with prognosis. Membrane GRP78, a stress-inducible endoplasmic reticulum chaperone which also appears on the plasma membrane (memGRP78) of aggressive cancers, plays a crucial role in the maintenance of embryonic stem cells. Our present study demonstrates that tumor cells isolated from ascites generated by epithelial ovarian cancer (ID8 cells) bearing mice have increased memGRP78 expression compared to ID8 cells in normal culture. We hypothesize that these ascites associated memGRP78+ cells are cancer stem-like cells (CSC) and memGRP78 is functionally important in CSCs. Supporting this hypothesis, we show that memGRP78+ cells isolated from ascites have increased sphere forming and tumor initiating abilities compared to memGRP78- cells. When the tumor microenvironment is recapitulated by adding ascites fluid to cell culture, ID8 cells express more memGRP78 and increased self-renewing ability compared to those cultured in medium alone. Moreover, compared to their counterparts cultured in normal medium, ID8 cells cultured in ascites, or isolated from ascites, show an increased expression of stem cell markers Sca-1, Snail and SOX9. Importantly, antibodies directed against the carboxy (COOH)-terminal domain of GRP78 significantly reduce the self-renewing ability of murine and human ovarian cancer cells pre-incubated with ascites, associated with a decreased phosphorylation of Akt and GSK3α, and reduced level of the transcriptional factor Snail. Based on this data, we suggest that memGRP78 is a logical therapeutic target for late stage ovarian cancer. Two types of ovarian cancer cells from different organ sites are profiled by gene expression. Parental cells (ID8) and ID8 cells which have metastasized to Ascites (AS).
Project description:Microarrays were used to examine gene expression changes in the surgical resections of high-grade serous ovarian cancer patients exhibiting clinically distinct levels of ascites volume. The present studies primary aim was to determine if there is a molecular gene expression difference between the patients presenting at time of surgery when high volumes ascites cases were compared to those with low volume ascites. The secondary aim was to determine what relevance this difference, if found, has to previously discovered molecular sub-types of high grade serous ovarian cancer. Total RNA obtained from snap-frozen stage III-IV high-grade serous ovarian cancer patients presenting with low volume (<=200 cc) or high volume (>=1000 cc) ascites volume.
Project description:Ovarian cancer is characterized by transcoelomic metastasis into the peritoneal cavity. The peritoneal malignant ascites is enriched with ovarian cancer cells and a small amount of tumor-associated immune cells which create a unique microenvironment actively contributing to progression of the disease. However, it is remain unclear how cancer cells communicate to its local environment under the influence of chemotherapy. To address this issue, we performed LC-MS/MS analyses of ovarian cancer ascites from the same patients before and after chemotherapy. We found that neoadjuvant chemotherapy causes a significant changes in the composition of ascites, and these changes are similar in samples obtained from all patients (n=10). Functional annotation of upregulated proteins with the use of KEGG and GO databases revealed that malignant ascites after chemotherapy were enriched with the cluster of spliceosomal proteins. These splicing factors were linked to induction of epithelial-to-mesenchymal transition leading to a more aggressive phenotype of cancer cells.
Project description:Ovarian cancer patients are generally diagnosed at stage III/IV, when ascites is common. The volume of ascites positively correlates with the extent of metastasis and negatively with prognosis. Membrane GRP78, a stress-inducible endoplasmic reticulum chaperone which also appears on the plasma membrane (memGRP78) of aggressive cancers, plays a crucial role in the maintenance of embryonic stem cells. Our present study demonstrates that tumor cells isolated from ascites generated by epithelial ovarian cancer (ID8 cells) bearing mice have increased memGRP78 expression compared to ID8 cells in normal culture. We hypothesize that these ascites associated memGRP78+ cells are cancer stem-like cells (CSC) and memGRP78 is functionally important in CSCs. Supporting this hypothesis, we show that memGRP78+ cells isolated from ascites have increased sphere forming and tumor initiating abilities compared to memGRP78- cells. When the tumor microenvironment is recapitulated by adding ascites fluid to cell culture, ID8 cells express more memGRP78 and increased self-renewing ability compared to those cultured in medium alone. Moreover, compared to their counterparts cultured in normal medium, ID8 cells cultured in ascites, or isolated from ascites, show an increased expression of stem cell markers Sca-1, Snail and SOX9. Importantly, antibodies directed against the carboxy (COOH)-terminal domain of GRP78 significantly reduce the self-renewing ability of murine and human ovarian cancer cells pre-incubated with ascites, associated with a decreased phosphorylation of Akt and GSK3α, and reduced level of the transcriptional factor Snail. Based on this data, we suggest that memGRP78 is a logical therapeutic target for late stage ovarian cancer.
Project description:Proteome-metabolome profiling of ovarian cancer ascites reveals novel components involved in intercellular communication http://www.mcponline.org/content/early/2014/09/30/mcp.M114.041194.full.pdf+html?sid=78e7a955-fa54-4ded-b296-89f1fb6adbec
Project description:Microarrays were used to examine gene expression changes in the surgical resections of high-grade serous ovarian cancer patients exhibiting clinically distinct levels of ascites volume. The present studies primary aim was to determine if there is a molecular gene expression difference between the patients presenting at time of surgery when high volumes ascites cases were compared to those with low volume ascites. The secondary aim was to determine what relevance this difference, if found, has to previously discovered molecular sub-types of high grade serous ovarian cancer.