Project description:To better understand the heterogeneity of different immune cell subsets at and near mucosal surfaces, we performed single cell RNA-sequencing on CD45+ cells from colonic biopsies. A total of 6 healthy donors were profiled using the 10x Genomics platform. We clustered cells into broad groups of T cells, B cells and myeloid cells, and then further refined the clustering of T cells. We identified 5 types of T cells present in our data, including intra-epithelial T cells, cytotoxic lamina propria CD8+ T cells, memory T cells, regulatory T cells and finally type 3 innate lymphoid cells (ILC3s).
Project description:A subset of post-infection irritable bowel syndrome (PI-IBS) patients have elevated, or high fecal proteolytic activity (PA). Fecal PA has been shown to correlate with increased symptom severity as well as lower quality of life scores, increased fecal output and increased intestinal permeability. To address the underlying mechanisms of barrier disruption as a consequence of high fecal PA, colonic biopsies were collected from healthy individuals PI-IBS patients (n=11). Individuals diagnosed with PI-IBS were further divided in to 2 subgroups, high PA and low PA as defined by the PA in matched fecal samples. RNA was extracted from the biopsies for bulk RNA sequencing to understand transcriptional differences between healthy and high PA PI-IBS patients as well as high PA and Low PA PI-IBS patients.
Project description:Genome-wide transcriptional profiling of colonic biopsies endoscopically acquired from the rectosigmoid area of healthy donors and UC patients.
Project description:The etiology of the inflammatory bowel diseases, including ulcerative colitis, remains incomplete, but recent findings points to the involvement of complex host-microbial interactions. We hypothesized that an analysis of the proteins on the host-microbial interacting surface, the intestinal mucosa, could reveal novel insights into the diseases. Mucosal colonic biopsies were extracted by standard colonscopy from sigmoideum from 10 ulcerative colitis patients from non-inflammed tissue and 10 controls. The biopsies were immediately following extraction snap-frozen for protein analysis and the protein content of the biopsies was characterized by high-throughput quantative gel-free proteomics.
Project description:Background & Aims: Genome-wide gene expression (GWGE) profiles of mucosal colonic biopsies have suggested the existence of a continuous inflammatory state in quiescent ulcerative colitis (UC). The aim of this study was to use DNA microarray-based GWGE profiling of mucosal colonic biopsies and isolated colonocytes from UC patients and controls in order to identify the cell types responsible for the continuous inflammatory state. Methods: Adjacent mucosal colonic biopsies were obtained endoscopically from the descending colon in patients with active UC (n=8), quiescent UC (n=9), and with irritable bowel syndrome (controls, n=10). After isolation of colonocytes and subsequent extraction of total RNA, GWGE data were acquired using Human Genome U133 Plus 2.0 GeneChip Array (Affymetrix, Santa Clara, CA). Data analysis was carried out by principal component analysis and projection to latent structure-discriminant analysis using the SIMCA-P11 software (Umetrics, Umeå, Sweden). Results: A clear separation between active UC, quiescent UC and control biopsies were found, whereas the model for the colonocytes was unable to distinguish between quiescent UC and controls. The differentiation between quiescent UC and control biopsies was governed by unique profiles containing gene expressions with significant fold changes. These primarily belonged to the family of homeostatic chemokines revealing a plausible explanation to the abnormal regulated innate immune response seen in patients with UC. Conclusion: This study has demonstrated the presence of a continuous inflammatory state in quiescent UC, which seems to reflect an altered gene expression profile of lamina propria cells. Keywords: Colonocytes, continuous inflammation, mucosal colonic biopsies, gene expression profiles
Project description:Background & Aims: Genome-wide gene expression (GWGE) profiles of mucosal colonic biopsies have suggested the existence of a continuous inflammatory state in quiescent ulcerative colitis (UC). The aim of this study was to use DNA microarray-based GWGE profiling of mucosal colonic biopsies and isolated colonocytes from UC patients and controls in order to identify the cell types responsible for the continuous inflammatory state. Methods: Adjacent mucosal colonic biopsies were obtained endoscopically from the descending colon in patients with active UC (n=8), quiescent UC (n=9), and with irritable bowel syndrome (controls, n=10). After isolation of colonocytes and subsequent extraction of total RNA, GWGE data were acquired using Human Genome U133 Plus 2.0 GeneChip Array (Affymetrix, Santa Clara, CA). Data analysis was carried out by principal component analysis and projection to latent structure-discriminant analysis using the SIMCA-P11 software (Umetrics, Umeå, Sweden). Results: A clear separation between active UC, quiescent UC and control biopsies were found, whereas the model for the colonocytes was unable to distinguish between quiescent UC and controls. The differentiation between quiescent UC and control biopsies was governed by unique profiles containing gene expressions with significant fold changes. These primarily belonged to the family of homeostatic chemokines revealing a plausible explanation to the abnormal regulated innate immune response seen in patients with UC. Conclusion: This study has demonstrated the presence of a continuous inflammatory state in quiescent UC, which seems to reflect an altered gene expression profile of lamina propria cells. Keywords: Colonocytes, continuous inflammation, mucosal colonic biopsies, gene expression profiles Adjacent mucosal colonic biopsies were attained endoscopically from the descending colon in patients with active UC (n=8), quiescent UC (n=9), and in controls (n=10). After extraction of total RNA, genome-wide gene expression data were acquired using Human Genome U133 Plus 2.0 GeneChip Array (Affymetrix, Santa Clara, CA). Amplification was required to obtain sufficient amounts of labelled complementary RNA (cRNA) target for analysis with arrays. Data analysis was carried out by principal component analysis and projection to latent structure-discriminant analysis using the SIMCA-P11 software (Umetrics, Umeå, Sweden).
Project description:The etiology of the inflammatory bowel diseases, including ulcerative colitis, remains incomplete, but recent findings points to the involvement of complex host-microbial interactions. We hypothesized that an analysis of the proteins on the host-microbial interacting surface, the intestinal mucosa, could reveal novel insights into the diseases. Mucosal colonic biopsies were extracted by standard colonscopy from sigmoideum from 10 ulcerative colitis patients from non-inflammed tissue and 10 controls. The biopsies were immediately following extraction snap-frozen for protein analysis and the protein content of the biopsies was characterized by high-throughput quantative gel-free proteomics.