Project description:Anticoagulants are a major component of rodenticides used worldwide, which function by effectively blocking the vitamin K cycle in rodents. The rat Vitamin K epoxide Reductase Complex (VKORC) subunit 1 is the enzyme responsible for recycling vitamin K, and five substitution mutations (Tyr139Cys, Tyr139Ser, Tyr139Phe and Leu128Gln and Leu120Gln) located in the VKORC1 could result in resistance to anticoagulant rodenticides. This study carried out a VKORC1-based survey to estimate the anticoagulant rodenticide resistance in three Rattus species (R. losea, R. norvegicus, and R. tanezumi) collected in Hong Kong. A total of 202 rats captured in Hong Kong between 2017 and 2021 were analysed. Sequencing of molecular marker cytochrome c oxidase subunit 1 (COX1) was carried out to assist the species identification, and the identities of 52 lesser ricefield rats (R. losea), 81 common rats (R. norvegicus) and 69 house rats (R. tanezumi) were confirmed. Three VKORC1 exons were amplified from individuals by PCR followed by Sanger sequencing. A total of 47 R. tanezumi (68.1%) contained Tyr139Cys mutation in VKORC1 gene, and half of them were homozygous. None of the collected R. losea and R. norvegicus were detected with the five known substitutions leading to anticoagulant rodenticides resistance, and previously undescribed missense mutations were revealed in each species. Whole genome sequencing was further carried out on some individuals, and single nucleotide polymorphisms (SNPs) were also identified in the introns. This is the first study investigating the situation of anticoagulant rodenticide resistance in the rats collected in Hong Kong. Given that the efficacy of rodenticides is crucial for effective rodent management, regular genetic testing as well as population genomic analyses will be required to both monitor the situation and understand the adaption of different rat haplotypes for integrated pest management. Susceptibility tests for individual rodenticides should also be conducted regularly to assess their effectiveness on local species.
Project description:Rattus tanezumi is a common domestic rat and host of the bubonic plague pathogen in China and Southeast Asia (SEA). The origin, genetic differentiation and dispersal of R. tanezumi have received increasing attention from researchers. The population genetics of R. tanezumi based on its mitochondrial cytochrome b gene have been studied to explain the origin, relationships and dispersal of populations. In this study, we captured a total of 229 rats; morphological and molecular biological identification cytochrome oxidase subunit I (COI) confirmed 131 R. tanezumi individuals collected from 6 provincial areas, and their Cytb gene sequences were analyzed. The results showed that the population in Mohan (MH), Yunnan, had the highest genetic diversity, while that in Ningde (ND), Fujian, had the lowest. Tajima's D statistic for all populations was negative and nonsignificant, indicating the possible expansion of R. tanezumi populations. Low gene flow occurred between the Zhangmu (ZM) R. tanezumi population and other populations, and the genetic differentiation among them was high. Furthermore, our analyses revealed the ZM lineage was the oldest lineage among the groups and diverged ~1.06 Mya, followed by the Luoyang (LY) lineages (~0.51 Mya) and Yunnan lineage (~0.33 Mya). In southeastern Yunnan, the Jinshuihe (JSH) and MH populations were more closely related to the populations in southeastern China (Fuzhou (FZ), ND, Quanzhou (QZ), Nanchang (NC)) and inland areas (Chongqing (CQ), LY) than to those in other areas of Yunnan (Jiegao (JG) and Qingshuihe (QSH)), indicating that R. tanezumi may have spread from southeastern Yunnan to the interior of China. In summary, R. tanezumi may have originated in ZM and adjacent areas, spread to Yunnan, and then spread from the southeast of Yunnan inland or directly eastward from ZM to inland China.