Project description:Analysis of DNA from fixed tissues specimens of 58 primary uveal melanomas, with known clinical outcome, to determine gene copy number variations that were associated with survival. Abstract: Uveal melanomas can be stratified into subgroups with high or low risk of metastatic death, according to the presence of gross chromosomal abnormalities. Where a monosomy 3 uveal melanoma is detected, patient survival at three years is reduced to 50%. However, approximately 5% of patients with a disomy 3 tumour ultimately develop metastasis, and a further 5% of monosomy 3 uveal melanoma patients’ exhibit disease-free survival for more than five years. Despite extensive knowledge of the chromosomal abnormalities occurring in uveal melanoma, the genes driving metastasis are not well defined. Gene copy number variations occurring in a well-characterised cohort of 58 formalin-fixed, paraffin-embedded uveal melanoma samples were identified using the Affymetrix SNP 6.0 whole genome microarray. Four genetic sub-groups of primary uveal melanoma were represented in the patient cohort: 1) disomy 3 with long-term survival; 2) metastasizing disomy 3; 3) metastasizing monosomy 3; and 4) monosomy 3 with long-term survival. Cox regression and Kaplan-Meier survival analysis identified three genes that were associated with differences in patient survival. Patients with an amplification of CNKSR3 (6q) or RIPK1 (6p) demonstrated longer survival than those with gene deletions or no copy number change (log rank, p=0.022 and p<0.001, respectively). Conversely, those patients with an amplification of PENK (8q) showed reduced survival (log rank p<0.001). CNKSR3, RIPK1 and PENK are novel candidate metastasis regulatory genes in uveal melanoma. This is the first report of amplification of a specific gene on 6p that is associated with improved uveal melanoma patient survival and suggests that the development of uveal melanomas with a propensity to metastasise may be limited by genes on 6p. 58 samples in total. Ten disomy 3 with long-term survival. Fifteen disomy 3 with metastasising. Seventeen monosomy 3 with long-term survival. Sixteen monosomy 3 metastasising.
Project description:Analysis of DNA from fixed tissues specimens of 58 primary uveal melanomas, with known clinical outcome, to determine gene copy number variations that were associated with survival. Abstract: Uveal melanomas can be stratified into subgroups with high or low risk of metastatic death, according to the presence of gross chromosomal abnormalities. Where a monosomy 3 uveal melanoma is detected, patient survival at three years is reduced to 50%. However, approximately 5% of patients with a disomy 3 tumour ultimately develop metastasis, and a further 5% of monosomy 3 uveal melanoma patients’ exhibit disease-free survival for more than five years. Despite extensive knowledge of the chromosomal abnormalities occurring in uveal melanoma, the genes driving metastasis are not well defined. Gene copy number variations occurring in a well-characterised cohort of 58 formalin-fixed, paraffin-embedded uveal melanoma samples were identified using the Affymetrix SNP 6.0 whole genome microarray. Four genetic sub-groups of primary uveal melanoma were represented in the patient cohort: 1) disomy 3 with long-term survival; 2) metastasizing disomy 3; 3) metastasizing monosomy 3; and 4) monosomy 3 with long-term survival. Cox regression and Kaplan-Meier survival analysis identified three genes that were associated with differences in patient survival. Patients with an amplification of CNKSR3 (6q) or RIPK1 (6p) demonstrated longer survival than those with gene deletions or no copy number change (log rank, p=0.022 and p<0.001, respectively). Conversely, those patients with an amplification of PENK (8q) showed reduced survival (log rank p<0.001). CNKSR3, RIPK1 and PENK are novel candidate metastasis regulatory genes in uveal melanoma. This is the first report of amplification of a specific gene on 6p that is associated with improved uveal melanoma patient survival and suggests that the development of uveal melanomas with a propensity to metastasise may be limited by genes on 6p.
Project description:Identification of genomic characteristics in a cohorte of human cutaneous primary melanoma associated with a distant metastasis free survival.
Project description:Microarray analysis was used to determine the expression of 12,000 genes in a set of 50 gliomas, 28 glioblastomas and 22 anaplastic oligodendrogliomas. Supervised learning approaches were used to build a two-class prediction model based on a subset of 14 glioblastomas and 7 anaplastic oligodendrogliomas with classic histology. A 20-feature k-nearest neighbor model correctly classified 18 of the 21 classic cases in leave-one-out cross-validation when compared with pathological diagnoses. This model was then used to predict the classification of clinically common, histologically nonclassic samples. When tumors were classified according to pathology, the survival of patients with nonclassic glioblastoma and nonclassic anaplastic oligodendroglioma was not significantly different (P = 0.19). However, class distinctions according to the model were significantly associated with survival outcome (P = 0.05). This class prediction model was capable of classifying high-grade, nonclassic glial tumors objectively and reproducibly. Moreover, the model provided a more accurate predictor of prognosis in these nonclassic lesions than did pathological classification. These data suggest that class prediction models, based on defined molecular profiles, classify diagnostically challenging malignant gliomas in a manner that better correlates with clinical outcome than does standard pathology.
Project description:Microarray analysis was used to determine the expression of 12,000 genes in a set of 50 gliomas, 28 glioblastomas and 22 anaplastic oligodendrogliomas. Supervised learning approaches were used to build a two-class prediction model based on a subset of 14 glioblastomas and 7 anaplastic oligodendrogliomas with classic histology. A 20-feature k-nearest neighbor model correctly classified 18 of the 21 classic cases in leave-one-out cross-validation when compared with pathological diagnoses. This model was then used to predict the classification of clinically common, histologically nonclassic samples. When tumors were classified according to pathology, the survival of patients with nonclassic glioblastoma and nonclassic anaplastic oligodendroglioma was not significantly different (P = 0.19). However, class distinctions according to the model were significantly associated with survival outcome (P = 0.05). This class prediction model was capable of classifying high-grade, nonclassic glial tumors objectively and reproducibly. Moreover, the model provided a more accurate predictor of prognosis in these nonclassic lesions than did pathological classification. These data suggest that class prediction models, based on defined molecular profiles, classify diagnostically challenging malignant gliomas in a manner that better correlates with clinical outcome than does standard pathology. louis-00379 Assay Type: Gene Expression Provider: Affymetrix Array Designs: HG_U95Av2 Organism: Homo sapiens (ncbitax) Material Types: total_RNA, synthetic_RNA, organism_part, whole_organism Disease States: Classic anaplastic oligodendroglioma, Non-classic glioblastoma, Classic glioblastoma, Non-classic anaplastic oligodendroglioma
Project description:We utilize the transcriptional effects of BETi in melanoma and identify AMIGO2 as a direct target gene essential for melanoma cell survival both in vitro and in vivo. We further map the enhancer landscape of NHM and melanooma and show that genes regulated by super enhancers are expressed in higher levels, exihibit higher sensitivity to BETi, and over expressed in melanoma relative to NHM. In melanoma, AMIGO2 is regulated by super enhancers, which upon BETi lose their BRD2/BRD4 enrichment, resulting in AMIGO2 silencing.
Project description:In order to improve our understanding of microRNA (miRNA) deregulation in melanoma development and possible consequences for patient survival, miRNA expression profiles were determined, using an array based approach, in melanoma tumors, melanoma cell lines and normal melanocytes. Differentially expressed miRNAs were evaluated in relation to clinical characteristics, patient prognosis in terms of melanoma-specific survival, and mutational status for BRAF and NRAS. Agilent microarray platform containing 470 miRNAs was used to determine miRNA expression profiles in 3 normal melanocytes (as non-neoplastic control), 21 melanoma cell lines and 16 clinical samples from fresh frozen regional lymph node metastases. To validate the microarray platform, the expression levels of some miRNAs were evaluated using RT-PCR and the correlation between the two platforms was assessed using Pearson Correlation analysis. The results obtained were further verified and confirmed by RT-PCR in an independent set of melanoma samples. Association between deregulated miRNAs and survival was determined by Univariate Cox proportional hazards model and log rank test.
Project description:In order to improve our understanding of microRNA (miRNA) deregulation in melanoma development and possible consequences for patient survival, miRNA expression profiles were determined, using an array based approach, in melanoma tumors, melanoma cell lines and normal melanocytes. Differentially expressed miRNAs were evaluated in relation to clinical characteristics, patient prognosis in terms of melanoma-specific survival, and mutational status for BRAF and NRAS.