Project description:To identify novel TNBC-relevant lncRNAs, we performed lncRNA microarray analysis using 5 TNBC tissues and their matched adjacent non-cancerous tissues by Arraystar Human LncRNA Microarray V3.0.
Project description:Triple negative breast cancer is an aggressive phenotypic breast cancer characterized by ER negative, PR negative and Her2 negative immunohistochemistry status. We embarked on a study to explore the transcriptome of Kenyan TNBC patients and identify potential biomarkers specific to Kenyan population. The transcriptome sequencing of tumors from Kenyan TNBC patients and comparisons with African American and Caucasian TNBC transcriptomes revealed several interesting targets and dysregulated pathways.
Project description:To determine the lncRNA and mRNA expression profile in TNBC and matched non-tumor tissues, we uesed lncRNA microArray analysis form Arraystar to examine the expression of lncRNAs and mRNAs in TNBC and matched non-tumor tissues.
Project description:Triple negative breast cancer (TNBC) represents a challenging tumor type due to their poor prognosis and limited treatment options. It is well recognize that clinical and molecular heterogeneity of TNBC is driven in part by mRNA and lncRNAs. To stratify TNBCs, we profiled mRNAs and lncRNA in 158 adjuvant TNBC tumors using an Affymetrix microarray platform. Lehmann clustering analysis allowed us to identify TNBC subtypes featuring unique lncRNA expression patterns, disease free and overall survival rates and particular gene ontology enrichments (performed with GSEA algorithm).
Project description:Triple negative breast cancer (TNBC) represents a challenging tumor type due to their poor prognosis and limited treatment options. It is well recognize that clinical and molecular heterogeneity of TNBC is driven in part by mRNA and lncRNAs. To stratify TNBCs, we profiled mRNAs and lncRNA in 158 adjuvant TNBC tumors using an Affymetrix microarray platform. Lehmann clustering analysis allowed us to identify TNBC subtypes featuring unique lncRNA expression patterns, disease free and overall survival rates and particular gene ontology enrichments (performed with GSEA algorithm).
Project description:Recent meta-analyses suggest triple-negative breast cancer (TNBC) is a heterogenous disease. In this study we sought to define these TNBC subtypes and identify subtype-specific markers and targets. We identified and confirmed four distinct, stable TNBC subtypes: (1) Luminal-AR (LAR); 2) Mesenchymal (MES); 3) Basal-Like Immune-Suppressed (BLIS), and 4) Basal-Like Immune-Activated (BLIA). RNA profiling analysis was conducted on 198 TNBC tumors (ER-negativity defined as Allred Scale value â¤2) with >50% cellularity (discovery set: n=84; validation set: n=114)
Project description:Triple-negative breast cancer (TNBC) has a relatively aggressive biological behavior and poor outcome. Our published study showed that PAI-1 could induce the migration and metastasis of TNBC cells. However, the underlying mechanism by which PAI-1 regulates TNBC metastasis has not been addressed. Using microarray analysis of lncRNA expression profiles, we identified a lncRNA SOX2-OT, which is by induced by PAI-1 and could function as an oncogenic lncRNA in TNBC.
Project description:Triple negative breast cancer is an aggressive phenotypic breast cancer characterized by ER negative, PR negative and Her2 negative immunohistochemistry status. We embarked on a study to explore the transcriptome of African American and Caucasian TNBC patients and identify race specific biomarkers.
Project description:Breast cancers lacking receptors for estrogen, progesterone or HER2 on their cell surface are called triple-negative breast cancers (TNBCs). TNBCs account for ~15-20% of all invasive breast cancers and do not benefit from anti-hormonal or anti-HER2 treatments. Although patients with TNBC can initially respond to chemotherapy, they do have worse overall prognosis compared to other breast cancer subtypes. Unfortunately, TNBCs lack clear targetable ‘driver’ oncogenes. Thus, there is an unmet need for strategies to improve the therapeutic options for these patients. We used microarrays to assess differences in gene expression in triple-negative breast cancer cells in response to the platinum-based chemotherapeutic agent cisplatin. The purpose was to find drug induced changes in gene expression level that could differentiate cisplatin sensitive from cisplatin resistant TNBC cell lines.