Project description:To identify novel TNBC-relevant lncRNAs, we performed lncRNA microarray analysis using 5 TNBC tissues and their matched adjacent non-cancerous tissues by Arraystar Human LncRNA Microarray V3.0.
Project description:Triple negative breast cancer is an aggressive phenotypic breast cancer characterized by ER negative, PR negative and Her2 negative immunohistochemistry status. We embarked on a study to explore the transcriptome of Kenyan TNBC patients and identify potential biomarkers specific to Kenyan population. The transcriptome sequencing of tumors from Kenyan TNBC patients and comparisons with African American and Caucasian TNBC transcriptomes revealed several interesting targets and dysregulated pathways.
Project description:To determine the lncRNA and mRNA expression profile in TNBC and matched non-tumor tissues, we uesed lncRNA microArray analysis form Arraystar to examine the expression of lncRNAs and mRNAs in TNBC and matched non-tumor tissues.
Project description:Triple negative breast cancer (TNBC) represents a challenging tumor type due to their poor prognosis and limited treatment options. It is well recognize that clinical and molecular heterogeneity of TNBC is driven in part by mRNA and lncRNAs. To stratify TNBCs, we profiled mRNAs and lncRNA in 158 adjuvant TNBC tumors using an Affymetrix microarray platform. Lehmann clustering analysis allowed us to identify TNBC subtypes featuring unique lncRNA expression patterns, disease free and overall survival rates and particular gene ontology enrichments (performed with GSEA algorithm).
Project description:Triple negative breast cancer (TNBC) represents a challenging tumor type due to their poor prognosis and limited treatment options. It is well recognize that clinical and molecular heterogeneity of TNBC is driven in part by mRNA and lncRNAs. To stratify TNBCs, we profiled mRNAs and lncRNA in 158 adjuvant TNBC tumors using an Affymetrix microarray platform. Lehmann clustering analysis allowed us to identify TNBC subtypes featuring unique lncRNA expression patterns, disease free and overall survival rates and particular gene ontology enrichments (performed with GSEA algorithm).
Project description:Recent meta-analyses suggest triple-negative breast cancer (TNBC) is a heterogenous disease. In this study we sought to define these TNBC subtypes and identify subtype-specific markers and targets. We identified and confirmed four distinct, stable TNBC subtypes: (1) Luminal-AR (LAR); 2) Mesenchymal (MES); 3) Basal-Like Immune-Suppressed (BLIS), and 4) Basal-Like Immune-Activated (BLIA). RNA profiling analysis was conducted on 198 TNBC tumors (ER-negativity defined as Allred Scale value â¤2) with >50% cellularity (discovery set: n=84; validation set: n=114)
Project description:Triple-negative breast cancer (TNBC) has a relatively aggressive biological behavior and poor outcome. Our published study showed that PAI-1 could induce the migration and metastasis of TNBC cells. However, the underlying mechanism by which PAI-1 regulates TNBC metastasis has not been addressed. Using microarray analysis of lncRNA expression profiles, we identified a lncRNA SOX2-OT, which is by induced by PAI-1 and could function as an oncogenic lncRNA in TNBC.
Project description:Triple negative breast cancer is an aggressive phenotypic breast cancer characterized by ER negative, PR negative and Her2 negative immunohistochemistry status. We embarked on a study to explore the transcriptome of African American and Caucasian TNBC patients and identify race specific biomarkers.
Project description:Breast cancer is genetically and clinically heterogeneous. Triple negative cancer (TNBC) is a subtype of breast cancer usually associated with poor outcome and lack of benefit from target therapy. A pathway analysis in a microarray study was performed using TNBC compared with non-triple negative breast cancer (non-TNBC). Overexpression of several Wnt pathway genes, such as frizzled homolog 7 (FZD7), Low density lipoprotein receptor-related protein 6 (LRP6) and transcription factor 7 (TCF7) has been observed in TNBC. Focus was given to the Wnt pathway receptor, FZD7. To validate its function, inhibition of FZD7 using FZD7shRNA was carried out. Notably decreased cell proliferation, suppressed invasiveness and colony formation in triple negative MDA-MB-231 and BT-20 cells were observed. Mechanism study indicated that these effects occurred through silencing the canonical Wnt signaling pathway, as evidenced by loss of nuclear accumulation of ï?¢-catenin and decreased transcriptional activity of TCF7. In vivo study revealed that FZD7shRNA significantly suppressed the tumor formation in xenotransplation mice due to decrease cell proliferation. Our finding suggests that FZD7 involved canonical Wnt signaling pathway is essential for tumorigenesis of TNBC. Thus, FZD7 may be a biomarker and a potential therapeutic target for triple negative breast cancer. 14 pretreatment non-triple negative breast tumors compare with 5 triple negative breast tumor.